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ABSTRACT

This research examines an improved FDDI protocol which ideally raises the
network throughput from 100 to a maximum of 300 Megabits per second. It develops the
details of the protocol structure at the MAC layer and provides a formal specification
using a formal model for protocol specification called Systems of Communicating
Machines. The study investigates the MAC FDDI standard and conforms the improved
protocol to the specifications of that document. The MAC protocol employs a Timed-
Token Controlled Concurrent Access with simultaneous transmission on the FDDI dual
ring. Key characteristics of FDDI are maintained in the improved protocol. The formal
specification enhances protocol interpretation and verification. It reduces protocol
ambiguities and allows proofs for protocol verification and correctness. A formal
specification of a real-world network protocol contributes to multivendor interoperability

achievement.
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I. INTRODUCTION

A. THE MOTIVATION

In recent years, the rapidly growing demand for transfer of a massive amount of
data between computing devices has led to a great deal of work towards improving
network performance. Data transfer rates in networks have evolved from Kilobits per
second to rates of 10 Megabits per second in CSMA/CD networks. The rapid progress
in the processing power of workstations, the use of fiber optics as transmission medium,
and the increased user expectations for performance have spurred development of a new
standard for local area networks which achieves rates of 100 Megabits per second. This
standard, the Fiber Distributed Data Interface (FDDI) is a token-passing ring local area
network recently developed by the American National Standard Institute (ANSI)
Accredited Standards Committee (ASC X3T9.5). FDDI has a 100 Megabits per second
capacity which enables it to meet the bandwidth requirements for many applications.

Originally, FDDI was proposed by the ANSI X3T9.5 as a backend network
between mainframe computers and their peripherals. The volume of data being moved
or stored has reached proportions that dictate development of a high-performance
interconnection among these computing devices. In the course of its development, new
demands were brought, which in turn were accommodated by the emerging FDDI. As
a result, the committee expanded the scope of FDDI to emphasize its application as a

high-speed backbone network interconnecting other heterogeneous, lower-speed local area




networks such as token ring 802.5 and CSMA/CD. With the proliferation of the new
powerful workstation-based computing environment, large and growing use of FDDI
networks is expected.

The new FDDI protocol can still be improved to achieve higher network
throughput. Lundy [Ref. 11] identifies inefficient use of network resources as one
problem faced by this protocol. Lundy proposes alternative transmission procedures to

increase the total network throughput by a factor of three to four times that of FDDI.

B. THE SCOPE OF THESIS

The goal of this research is to examine the suggested alternative transmission
procedures which ideally raise the utilization to 300 Megabits per second, develop the
details of an improved Media Access Control (MAC) protocol which supports these
procedures and specify this MAC protocol using a formal model. The study investigates
the current MAC FDDI standard and conforms the improved MAC protocol to the
specification contained in that document.

The new MAC will satisfy three basic requirements. First, it will allow
simultaneous use of both rings. Second, it will free a ring segment from frame repetition
allowing creation of ring disjoint partitions. Third, it will permit concurrent use of the
partitioned dual ring segments by two transmitting stations. This improved protocol can
ideally achieve maximum throughput of 300 Megabits per second in a dual ring

attachment topology.




To achieve the desired improvement, changes in the method of access to the
physical medium are needed. New protocol data unit formats and the algorithms to
substantiate the changes in the proposed access method are important initial research
problems which are addressed. Another challenging problem in a dual ring operation is
how to adapt the configuration function of FDDI when a node or link fails such that the
same fault tolerance is maintained? Furthermore, since the new transmission procedures
break the rings into disjoint partitions, how can the MAC supervisory frames circulate
entirely in one logical ring during the initialization process? These and other intricate
problems are analyzed and solved with the formal specification.

The specification in this thesis is a detailed formal protocol description which
contributes to and enhances the standard document. First, it reduces documented protocol
ambiguities; a desired feature in the interoperability achievement among multivendors.
Next, it allows proofs for protocol correctness and development of protocol test
procedures. Finally, it further increases understanding of the complex FDDI protocol.
This thesis provides a formal specification of the improved FDDI protocol using a model
called systems of communicating machines [Ref. 8}. This model was chosen because it
is an effective tool for the specification of this protocol, providing flexibility as well as

a formal basis for analysis.

C. THESIS ORGANIZATION
The thesis has six chapters. Chapter II reviews the FDDI network as a background

for the thesis. The main focus is on the Media Access Control (MAC). Chapter III




introduces the MAC for the improved FDDI protocol. A timed-token controlled
concurrent access is discussed and algorithms to generate subtoken are analyzed. Chapter
IV provides the protocol MAC formal specification. Discussion will include the benefits
of the formal specification, the communicating machines processes, and the interface
operations. Chapter V provides proofs for correctness of protocol modules operation.
Chapter VI concludes the thesis with a research review and provides suggestions for

future work.




II. THE FIBER DISTRIBUTED DATA INTERFACE
This chapter provides the reader with information concerning the Fiber Distributed
Data Interface (FDDI) network. The main emphasis of this chapter is on the Media
Access Control (MAC) layer which will provide the background for the work developed

in the subsequent chapters.

A. HIGH PERFORMANCE MULTI-NODE NETWORK

The Fiber Distributed Data Interface is a high-performance general purpose multi-
station token ring network designed for efficient operation with a peak data transmission
of 100 Megabits per second. FDDI provides many advantages over current LANs and
as a high speed network it can meet the requirements of many applications.

The FDDI specification is a set of four standards being developed by a Task Group
of Accredited Standards Committee (ASC) X3T9.5. The American National Standards
for the physical layer PHY (ANSI X3.148-1988) and the Media Access Control (MAC)
(ANSI X3.139-1987) have been approved and published. Other standards that will
constitute the complete set are still actively being modified. In addition, the ISO/IEC
JTC1/SC 13 standards committee are processing the FDDI documents as International
Standards. The already approved documents constitute the basic FDDI. There are

extensions to the basic FDDI now in the X3 approval process. [Ref. 19]




1. The FDDI Token Ring Architecture

An FDDI network consists of a set of nodes connected by optical transmission
media into one or more rings. A ring is a closed loop of alternating nodes connected by
the physical media. The data is transmitted from node to node serially over the ring as
a stream of suitably encoded symbols. Each node regenerates and repeats the data
downstream to the next node. The network may consist of hundreds of nodes, although
no multivendor have built FDDI rings with a 200 nodes yet [Ref. 14].

The X3T9.5 committee took the existing IEEE 802.5 Token Ring protocol
standard as the basis for development of FDDI. These two protocols are similar in
functionality, however FDDI employs a timed token passing mechanism and uses fiber
optics as transmission medium. Among other differences FDDI offers greater bandwidth
and greater reliability. While 802.5 token ring operates with a maximum data rate of 4
Megabits per second FDDI provides for efficient network operation with a peak data rate
of 100 Megabits per second. In fact, FDDI is the first standard designed for high
performance general purpose multi-station network.

The token ring architecture of FDDI defines two rings. The first ring is called
the primary ring and is used in the normal network operation. The second ring provides
redundancy and is used only for reconfiguration of the network when a physical break
occurs on the primary ring. This pair of rings forms the trunk ring of an FDDI network.
The data in each ring flows in opposite directions. A timed-token method controls the
access to the medium. Further discussion on the FDDI medium access method is given

in the Media Access Control subsection of this chapter.




a. FDDI Network Configurations ard Topologies

Figure 1 illustrates the types of stations and topologies used in FDDI
networks. The figure shows the three types of stations: DAS, CON, and SAS, which are
defined by the attachment to the ring. The Dual Attachment Station (DAS) is the basic
building block of an FDDI network. It connects to a pair of physical links to carry
signals in opposite directions. The Dual Attached Station has two ports A and B; one for
each ring, and attaches directly into the trunk ring in a peer connection. A second type
of station uses a concentrator (CON) as a device to provide the attachment. A
concentrator has additional ports (master ports) beyond those required for its own
attachment to the FDDI ring. Concentrators are either Single Attachment (SAC) or Dual
Attachment (DAC). A dual attachment concentrator can attach directly to the trunk ring,
and provide the capability to connect slave stations into either, or both, of the logical
rings provided by the trunk ring. A third type of station is the Single Attachment Station
(SAS), which has one port (slave port) and therefore would not attach directly into the
trunk rings. Instead, a Single Attachment Station connects only to a concentrator. The
Dual Attached Stations or Dual Attached Concentrators are also called Class A stations
whereas the Single Attached Stations are called Class B stations. [Ref. 13}

FDDI allows only one trunk ring, however cascaded concentrators can attach
multiple trees of varying levels. This topology is called a dual ring of trees. It combines
the advantages of a dual ring with the advantages of a tree configuration.

One advantage of a dual ring design is its superior reliability provided by

DAS and CON. For example, the dual counter-rotating ring alleviate the problem of
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Figure 1: FDDI Stations Configuration and Topologies




multiple points of failure within the network. If a node or link fails, the two counter-
rotating paths wrap together around the fault, allowing communication to continue. In
this case the configuration changes to the Wrap mode. In the Wrap mode there is a single
logical ring as opposed to the normal configuration or Thru mode, which has a dual
logical ring. Also, DAS may offer the bypass capability by means of an optical switch.
This mechanism is useful if a station for some reason is removed from the ring path.
This feature allows the remaining stations to continue in the Thru mode. Figure 2
illustrates these configuration changes.

Another advantage of a ring design is that the optical fiber easily
accommodates ring configurations. This approach significantly reduces the size, cost, and
complexity of the hardware required by a network since the optical fiber medium offers
high bandwidth which is best suited for bit-serial transmission. [Ref. 12]

The tree topology provides fault tolerance. For example, when removing a
station or the cable connecting the SAS to the CON fails, the bypassing of the failure
occurs electronically within the CON. In the case where there are many stations within
a facility, CON allow for any number of such failures or disconnections without affecting
the connectivity of all other stations on the FDDI network. Combining the dual ring and
the tree portions in one topology, the resulting dual ring of trees provides a very high
degree of fault tolerance and increases the availability of the backbone ring. [Ref. 7]

Essentially, the improvement in the protocol modelled in this thesis is
achieved by the effective use of both rings during normal network operation. Therefore,

the topology addressed by this protocol is a dual ring attachment configuration. However,
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Figure 2: Configuration Changes
as the figure illustrates, other levels in the FDDI topology may use a single attachment
type of station which could not be implemented with the improved protocol since the
secondary ring for these stations is absent. This issue is discussed in Chapter III.

An upward-compatible version of the initial FDDI is FDDI-II. FDDI-II
allows the creation of an integrated services LAN because it adds the capability for
circuit switched services to the packet services of the basic FDDI. The concept behind
FDDI-II is time-division multiplexing (TDM) sixteen separate channels, with each
channel having a maximum of 98 Megabits per second full duplex. FDDI-I s intended
for simultaneous voice, video, and data capabilities. This thesis uses the basic FDDI as

the basis to model the improved FDDI protocol.
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b. FDDI Optical Fiber

The basic FDDI standard uses graded-index multi-mode optical fiber with
surface Light Emitting Diodes (LEDs) transmitting at a nominal wavelength of 1325
nanometers. This wavelength is a near "zero-dispersion” in conventional germanium-
doped silica fibers. Multi-mode fibars can collect output from Light Emitting Diodes,
which have much larger emitting areas, are less expensive, and have high reliability. The
graded-index reduces the mode dispersion of a multi-mode fiber, allowing higher
bandwidths. Commercial graded-index fibers attains bandwidths of around a Gigahertz-
Kilometer [Ref. 6].

The FDDI standard recommends the use of 62.5/125 micron (one
thousandth of a millimeter) optical fiber with minimum required fiber bandwidth is 500
Megahertz-Kilometer at the 1300 nanometer operating wavelength of transmitters and
receivers. At this wavelength, the attenuation of multi-mode fiber is in the range of 0.6
to 1.0 decibel/kilometer. The 62.5/125 micron refers to the diameter of the core and
cladding of the optical fiber. Alternates multi-mode fibers such as 50/125, 100/140, or
85/125 are also allowed [Ref. 17]. The fiber links in FDDI can be up to two kilometers
apart. The standard specifies an instantaneous data transmission rate of 100 Megabits per
second, which is the absolute upper bound on the throughput rate of the network. The
effective sustained data rate at the data link layer can be over 95 percent of this peak rate
[Ref. 13].

Single-mode fiber is another step in the evolution of FDDI. The

maximum distance of two Kilometers achieved with multi-mode is extended to 60

11




kilometers in the specifications for the single-mode fiber added to the FDDI standards;
however, the data rate is maintained at 100 Megabits per second. With larger distances

FDDI can be an important backbone high-speed network to link other LANS.

2. FDDI Standards and Their Relations

Figure 3 depicts the organization of the FDDI standards. These standards
relate to layer 1 (Physical) and layer 2 (Data Link) of the OSI reference model. The
basic FDDI assumes the use of IEEE 802.2 standard, Logical Link Control (LLC),
however does not specify this standard. The Basic FDDI is organized as follows:

® Physical Layer (PL), which is divided into two sublayers: the Physical Medium
Dependent (PMD), and the Physical Layer Protocol (PHY).

® Data Link Layer (DDL), which is divided into sublayers: the Media Access
Control (MAC), and the optional Logical Link Control (LLC). Other optional
sublayers are being processed as an enhancement to the approved FDDI standard.

® Station Management (SMT), which conducts a node level control necessary to
ensure cooperation with other nodes on a ring.

The arrows between the entities indicate their relations. FDDI describes these
relations as services that two entities must provide and require at the interface between
them.

The Physical Layer Medium Dependent standard (PMD) is the bottom
sublayer of the Physical Layer. This sublayer provides all services necessary to pass
successfully the serial bit stream of digital code from node to node. The PMD defines
the physical medium, drivers and receivers, optical signal and waveform requirements,

cable plant, connectors, and medium characteristics. This standard specifies an optical
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Figure 3: Organization of FDDI standards
multi-mode fiber ring for the basic FDDI with a transmission data rate of 100 Megabits
per second, using the nonreturn to zero, invert on ones (NRZI) 4B/5B encoding scheme.
The wavelength specified for data transmission is 1325 nanometers. The default values
for nodes connectivity establish 1000 physical links as basis, a maximum distance
between adjacent repeaters of two Kilometers, and 200 kilometers of total fiber path
length. These values typically correspond to 500 nodes distributed over 100 kilometers
of dual fiber cable; however, FDDI can support larger networks by increasing the node

connectivity values.
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The Physical Layer Protocol (PHY) defines the physical layer services and
addresses the data encoding/decoding, clocking, latency, and data framing. The PHY
defines the physical layer services in terms of primitives and parameters. These
primitives support the transfer of data from a single MAC entity to all MAC entities
contained within the same local network defined by the medium. The PHY specifies the
data encoding scheme by using a code called 4B/5B. This scheme does encoding four bits
at time; it encodes each four bits of data into a symbol with five cells such that each cell
contains a single signal element (presence or absence of light). In effect, it encodes each
set of four bits as five bits. Thus, the protocol achieves 100 Megabits per second with
125 Megabaud. The PHY further encodes the 4B/5B using Non Return to Zero Inverted
(NRZI), which uses differential encoding, which improves reliability in the presence of
noise and distortion. This reliability is because differential encoding decodes the signal
comparing adjacent signal elements rather than the absolute value of a signal element.

The Media Access Control (MAC) corresponds to the lower half of the Data
Link Layer for the FDDI. The standard assumes that MAC can be developed to operate
under the Logical Link Control (LLC) of the ANSI/ISEE 802 series. It is the MAC
which actually specifies the token passing and data transfer features, and thus is of
primary interest in this thesis.

The Media Access Control standard presents its specifications in terms of the
MAC services, facilities, and the MAC protocol operation. The number of MAC services
depends on the implementation; however, a minimum set of services shall be provided

to satisfy the requirements of the Logical Link Control or any other higher level protocol
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being used. The interface includes facilities for transmitting and receiving protocol data
units (PDU), and provides operation status information for use by higher-layer error
recovery procedures. The MAC specification defines the frame structure and the
interactions that take place between MAC entities. In general, MAC specifies access to
the medium, addressing, data checking, frame format, and frame content interpretation.

The Station Management standard (SMT) defines the FDDI station
configurations, the ring configurations, and specifies the control required for proper
operation and interoperability of stations in an FDDI ring. FDDI divides SMT operation
into three broad categories [Ref. 13]: Connection Management (CMT), Ring
Management (RMT), and Operational Management. CMT establishes and maintains the
physical and logical topology of the FDDI network and manages the physical layer
resources of an FDDI node. CMT includes the protocols for ring formation and fault
isolation on the duplex optical data links that connects FDDI stations. RMT deals with
the correctness of the logical ring operation. It manages the MAC layer resources of a
station. Operational Management deals with the management of the FDDI network in the
operational state. These are multiple stations services with the purpose of proper
operation and interoperability achievement.

There are also other standards being developed as extensions to the basic
FDDI. A Single-Mode Fiber version of the PMD standard (SMF-PMD) will increase the
length of permissible fiber links from two to 60 Km. This standard provides an alternate
to the basic PMD. Another standard being developed that provides an alternate to basic

PMD is the FDDI-to-SONET (Synchronous Optical NETwork) physical Layer Mapping
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Function standard. This standard will provide a transport for FDDI over SONET
common carrier facilities [Ref. 13]. A third extension to the basic FDDI is the Hybrid
Ring Control standard (HRC), which specifies FDDI-II. HRC provides multiplexing of
packet and circuit switched data on the shared FDDI medium. The purpose of FDDI
standards is to ensure interoperability between conforming FDDI implementations. The
implementations shall follow the guidelines of the standards functional descriptions,

however these implementations may employ any design technique that is interoperable

[Ref. 18].

B. THE MEDIA ACCESS CONTROL (MAC) STANDARD

The Media Access Control (MAC) provides deterministic access to the medium,
address recognition, generation and verification of frame check sequences. Its primary
function is the delivery of frames, including frame insertion, repetition, and removal.
[Ref. 19]

As with IEEE 802.5, FDDI configures the network as a ring. The basic operation
of the token is similar for both 802.5 and FDDI, however FDDI employs dual counter-
rotating rings: a primary and a secondary ring. The secondary ring exists primarily for
the purpose of redundancy. This improves reliability on an FDDI network.

The basic FDDI network employs two classes of services, synchronous service and
asynchronous service. Synchronous service is for applications where the nodes deliver
predictable units of data at regular intervals, such as real-time control that requires access

to the channel within a specific time period [Ref. 4]. Each node is allotted a fraction of
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the total available FDDI bandwidth for its synchronous service. Asynchronous service
receives lowest priority. This service is permitted only after the station has finished its
synchronous transmissions and if the timing requirements allow the service execution.

The FDDI MAC also provides a mechanism that satisfies the requirement for
dedicated multiframe traffic. A station may initiate an extended dialogue requiring
substantially all of the unallocated (asynchronous) ring bandwidth by using a restricted
token. The initiating station captures a nonrestricted token, transmits the first frame of
the dialogue to the addressed station, and then issues a restricted token. The destination
address station receives the initial dialogue frame, enters the restricted mode, and then
these two stations may exchange data frames and restricted tokens for the duration of the
dialogue. Restricted token mode is terminated upon the capture of a restricted token by
the terminating station. This station transmits its final dialogue frame, then issues a
nonrestricted token. Any station may transmit synchronous frames upon capture of either
type of token. [Ref. 19]

The FDDI MAC protocol has a number of other functions. MAC is responsible for
data integrity. For example, it ensures the frames are not corrupted. A valid frame
criteria defined in the MAC enforces the required reliability of frame reception. Another
responsibility is data stripping. For example, the MAC of a transmitting station is
responsible for the removal from the ring of all the frames that it has place 1 on the ring.
Ring initialization, error detection and correction are also responsibilities of MAC. Ring
initialization ensures the generation of only one token. Each station monitors the ring for

invalid conditions requiring ring initialization. Invalid conditions include an extended
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period of inactivity or incorrect activity. If an station detects that the time since it last
saw a valid token significantly exceeds the Target Token Rotation Time (TTRT), then
the station assumes an error condition. The error detection and correction involves the
Claim Token Process, the Initialization Process, and the Beacon Process. Any station
detecting the need for initialization of the ring initiates the claim process by issuing
Claim frames. The MAC protocol uses this procedure to negotiate the same value for the
Token Rotation Time (TRT) in all of the stations on tke ring and to resolve contention
among stations attempting to initialize the ring. The station that has won the claim
process accomplishes the initialization process. The MAC protocol uses the beacon

process to isolate a serious ring failure such as a break on the ring. [Ref. 13]

1.  Facilities Specification
The facilities clause of the FDDI MAC and PHY standards define the means
by which peer entities communicate on the ring. MAC facilities include symbol set,
protocol data units formats, timers, and counts. PHY facilities are coding, symbol set,
and line states. As background for protocol description and formal specification presented
in this thesis it is relevant to describe the symbol set, formats of PDU, timers, and

counts used by the MAC.

a. The FDDI Symbol Set
MAC and PHY operate similarly in a peer communication, however they
use different signal units. MAC uses a symbol as an atomic signaling element to convey

information; the PHY entity uses a code bit as the smallest signaling element. Code bits
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are logical ones and zeros that represent optical signal polarity transitions by the use of
NRZI encoding technique. A symbol is a group of five consecutive code bits. This
sequence is also called as code group. Each code group provides 32 possible bit
combinations. The establishment of code group boundaries is a concept implied in the
definition of code group. This process is known as framing, and the established boundary
is known as "framing boundary.” Table 1 shows the FDDI symbol set mapped to code
groups (adapted from the MAC standard). FDDI uses symbols to convey three types of

information: line state symbols, control sequences, and data quartets.
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@ Line State Symbols

@ Control Sequences

(=) Control Symbols:
24 11000 J First symbol of JK pair I
17 10001 K Second symbol of JK pair
13 01101 T Ending Delimiter symbol

(b) Control Indicators: H
07 00111 R Reset (logical ZERO or OFF) I
25 11001 S Set (logical ONE or ON) |

@ Data Quartets Hexadecimal  binary
30 11110 ) 0 0000
09 01001 1 1 0001
20 10100 2 2 0010
21 10101 3 3 0011
10 01010 4 4 0100
1 01011 5 5 0101
14 01110 6 6 0110
15 01111 7 7 o111
18 10010 8 8 1000
19 10011 9 9 1001
2 10110 A A 1010
23 10111 B B 1011
26 11010 C C 1100
27 11011 D D 1101
28 11100 E E 1110
29 11101 F F 1111

@ Invalid Code Points
o1 00001 VorH These code points shall not be
02 00010 VorH transmitted because they violate run
03 00011 v leagth or duty cycle requirements.
06 00110 \' Stream of codes points 01, 02, 08 and
08 01000 VorH 16 shall be interpreted as Halt when
12 01100 \' detected.

VorH
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There are three line state symbols: Quiet (Q), Halt (H), and Idle (I).
These symbols are for use on the medium between transmission of Data Link Layer

(DDL) protocol data units. The meaning of each line state symbols is as follows:

® Q indicates absence of activity on the medium.
® H indicates a logical break in activity on the medium.

@ I indicates normal condition of the medium.

Control sequences are either control symbols or control indicator
sequences. Control symbols are used to form the Starting Delimiter (SD) and Ending
Delimiter (ED) sequences of a Protocol Data Unit (PDU). Control indicators specify
logical conditions associated with a data transmission sequence (i.e., a MAC PDU).
Control symbols are named J, K, and T. Control indicators are named R and S. The
Encode function of PHY uses the symbol sequence "JK" from MAC to indicate the
starting boundary of a PDU. This starting boundary is called the Starting Delimiter (SD)
of a PDU. This symbol pair forms a uniquely recognizable group of code bits. The
symbol "T" is the ending delimiter symbol used to terminate all PDUs. This control
symbol shall appear in the Ending Delimiter (ED) field of a PDU. The ED field may use
either one or two T symbols; if a PDU is as frame then the ED field contains only one
T symbol. In this case the T symbol shall be followed by the Frame Status field that has
a minimum of three control indicator symbols (R, S) to form a sequence with even

number of symbols also called balanced sequence of symbol pairs. If a PDU is a token
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then no control indicators are present; in this case the ED field contains two T symbols.
As opposed with Starting Limit that has a uniquely recognizable code bit sequence
regardless of previously established framing boundaries, the Ending Delimiter cannot be
recognized as independent of symbol boundaries. Therefore, previous establishment of
frame boundaries is necessary for proper decoding of this symbol.

A data quartet symbol conveys four data bits of arbitrary data within a
frame. The hexadecimal digits (0-F) denote the sixteen data quartet symbols. The
character "n" denotes a generic element of this set. The encoding technique used by PHY
is called as 4B/5B since each four bits of data are encoded into a symbol of five cells,
each cell contains a single signal element.

A violation symbol V denotes a condition on the medium that does not
conform to any other symbol in the symbol set. Invalid code points are formed by V or
H symbols. These Code Points are not to be transmitted since a violation on code run

length and Direct Current balance requirements will occur.

b. Formats of Protocol Data Units
FDDI MAC specifies two formats of PDU: frame and token formats.
Frame formats are variable-length PDU used for transmission of Data Link Layer
messages. FDDI MAC controls the sizes of frames as required by the physical layer. The
maximum frame length is 4500 octets or 9000 symbols\. Tokens are short fixed-length
PDU that allow the right to transmit data. Frames and tokens are structured in predefined

sequences of fields. Each field contains one or more symbols ordered so that the left-
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most symbol is to be transmitted first, and is the most significant bit. Figure 4 depicts

the frame format.
SFS FCS coverage EFS
PA|SD| FC |DA|SA | INFO | FCS| ED| FS
! CLFF 12222 E A C
I . Ipay| J (K| 0 | 0 [4nor12gd4n0r120 1. 04, 8n T [53SR

Figure 4: The Frame Format

Each field of the frame format has the following meaning:

® Preamble (PA) - consists of 16 or more Idle symbols to signal a start transition for
synchronization of station’s clock.

® Starting Delimiter (SD) - consists of two symbols (J and K) to signal a start receive
of a frame.

® Frame Control (FC) - consists of two data symbols. These two symbols has the
following eight bit format: CLFF ZZZZ. These bits indicate the Class (C) of
service, the Length (L) of both MAC addresses (DA and SA), and the frame type
(FF in conjunction with the CL and 2ZZZ bits).

® Destination Address(DA) - consists of four or 12 symbols to indicate the
destination address of the PDU.

® Source Address (SA) - consists of four or 12 symbols to indicate the originator of
the PDU.

® Information (INFO) - consists of zero, one, or more data symbol pairs. These
symbols forms the contents of the LLC, SMT, or MAC message carried by the
frame.
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® Frame Check Sequence (FCS) - consists of eight data symbols. This field is used
to detect errors on data bits within the frame as well as erroneous addition or
deletion of bits to the frame.

® Ending Delimiter (ED). - consists of one terminate symbol (T) to indicate a frame
ending. The field is necessary to provide a criteria for acceptance of a valid frame.
The ED must be met before a frame is accepted.

® Frame Status (FS) - consists of three or more Control Indicators symbols (R and
S) that follows the Ending Delimiter of a frame. The first three Control Indicators

are mandatory. They indicate Error Detected (E), Address Recognized (A), and
Frame Copied (C).

¢. Timers and Counts

FDDI is essentially a timed token rotation protocol. The MAC standard
specifies a set of timers and counts to regulate and monitor ring operation. Each station
maintains three timers to perform the timing requirements for the services: the Token
Rotation Timer (TRT), the Token Holding Timer (THT), and the Valid-Transmission
Timer (TVX). In addition, each MAC maintains frame counts as an aid to monitor the
network performance, problem determination and fault location. Implementations may
optionally employ other count, however three counts are mandatory: Frame_ct, Error_ct,
and Lost_Ct. The next paragraphs briefly describe these timers and counts.

The purpose of TRT is to control ring scheduling during normal .
operation and to detect and recover from serious ring errors situations. TRT measures
the time since a station last received a token in a rotation from one cycle to the next so
that it defines if the token is "early® or "late.” During different phases of ring operation

the protocol initializes TRT with different values whenever it expires. The number of
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TRT expirations is important information to assist Station Management in the isolation
of serious ring errors. A counter called Late_Ct accumulates the TRT expirations.

The Token Holding Timer (THT) saves a time value for a dynamic
bandwidth sharing or asynchronous service. This timer is initialized with the current
value of TRT when a station captures the token. During the asynchronous service, THT
is running to control transmission of asynchronous frames. A MAC may initiate a
transmission of these frames if timer THT has not expired. In addition, a station shall
release the token before its allocated THT expires.

The Valid-Transmission Timer (TVX) assists Station Management to
recover from transient ring error situations. The MAC standard describes the derivations
for a timeout TVX value called TVX_value. Once TVX expires it remains in this
condition until reset by the Receiver.

Frame_Ct is the count of all frames received. This count is incremented
whenever the terminate symbol (T) of a frame Ending Delimiter (ED) field is received.

Error_Ct is the count of error frames. This count is incremented if this
MAC detects a frame error that no previous MAC has detected. This condition holds true
when the Receiver sets an error flag for the arrived frame received with the Frame Status
field showing the Error Detected indicator not set (E # S); otherwise, no error frame
is counted by this MAC since the error have been already counted by other MAC.

Lost_Ct is the count of all instances in which MAC is in the process of
receiving 2 PDU and an error is detected that prevents PDU reception. In these cases,

MAC increments Lost_Ct and strips the rest of the PDU from the ring, transmitting idle

25




symbols. When remnants of PDU are received Lost_Ct is not incremented because they
are followed by Idle symbols. The specification presented in this thesis shows precisely
these instances for each incoming sequences that form the PDU. For example, whenever
a format error occurs on the Starting Delimiter of a PDU the Receiver sends a FO_Error
to the Transmitter, increments the Lost_Ct, and enters the AWAIT SD state for a new
PDU. Then, the Transmitter begins to transmit Idle symbols stripping the PDU from the
ring. The specification covers similar operation for all PDU field sequences which comes

with a format error or whenever a PH_invalid signal is received from PHY.

2. Operation
This subsection briefly discusses several characteristics of the protocol
operation, which are of interest for the formal specification. The timed-token mechanism,

ring scheduling, frame and token transmission, and frame stripping are discussed.

a. FDDI Timed-Token Access Method
By passing a token around the ring, FDDI controls the opportunity that
each station will have to transmit a frame or a sequence of frames. A token is a specific
bit sequence that circulates among the nodes on the ring, giving transmit permission to
any station that wants to transmit its data. Once a station "captures” a token, its frames
may be transmitted. However, the access to the network and scheduling is also controlled
by timers. The next paragraphs provides the details of the timing rules for the ring

scheduling process of a FDDI network.
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A key parameter set by the managers of FDDI networks is the Target
Token Rotation Time (TTRT) [Ref. 2]. This is a value negotiated between all stations
MAC during ring initialization via the Claim Token process. As part of the Claim Token
process at the time of ring initialization, each MAC station uses a requested TTRT value
(T_Req) to negotiate for the lowest operative value of TTRT (T_Opr). This value is
required to be in the range of Token Rotation Timer (TRT), which is established for all
stations as the closed interval from a minimum to a maximum TTRT value to be
requested (T_Min and T_Max). As a result of this negotiation, the lowest value of T_Req
becomes the negotiated TTRT value (T_Neg) at the Receiver of each station. The MAC
winning Claim Token station then sets the operative TTRT value (T_Opr) to the
negotiated TTRT value (T_Neg).

Tokens may be "early” or "late." A token which arrives before TRT reaches
TTRT is an "early” token, otherwise is a "late” token. TRT is reset to T_Opr each time
an early token arrives. An early token may be used for both classes of services
synchronous or asynchronous, whereas a late token may be used only for synchronous
service.

The FDDI protocol guarantees an average TRT not greater than TTRT,
and a maximum TRT not greater than twice TTRT. Johnson in [Ref. 3] proved that the
timing requirements of this protocol are satisfied.

Figure 5 illustrates how T_Opr for the ring is obtained during ring
initialization. This figure shows a timing chart for n FDDI stations. The station number

two is the winning Claim Token station since its T_Req is the lowest of all requested
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Figure §: Derivation of T_Opr During Ring Initialization
TTRT values that fall in the range of TRT. Note that if a T_Opr falls outside the range
of TRT then a station is unable to operate correctly on the ring (stations J and K).

The Token Rotation Timer (TRT), the Token Holding Timer, the
station’s synchronous bandwidth allocation, and the counter Late_Ct govern the amount
of time that a station may hold the token and transmit frames [Ref. 4]. The timed-token
rules of FDDI are summarized as follows:

® If Late Ct = O (token early), then the Transmitter places the current value of TRT
into THT, and resets TRT to T_Opr. This is represented in the formal specification

as THT « TRT; and TRT « T_Opr; both synchronous and asynchronous frames
may be transmitted.
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e If Late Ct > O (token late), the value "expired” is placed into THT, and Late_Ct
is cleared (THT < expired; Late_Ct « 0;). In this case, TRT is not reset to T_Opr
and only synchronous frames may be transmitted.

® During synchronous transmissions only TRT is running. During asynchronous
transmissions both TRT and THT are running.

® No frames are allowed to be transmitted after expiration of the station’s TRT. The
length of time an individual station may transmit synchronous frames is bounded

above by its synchronous bandwidth allocation. The THT limits the time for
asynchronous frames.

In the formal specification the station MAC Transmitter is responsible
to carry out the timing operations. The model allows the representation of ring
scheduling in the FDDI network. The MAC Transmitter State Diagram and the

Transition Table show the representation of these rules.

b. Frame and token transmission

Upon a request for Service Data Unit (SDU) transmission, MAC
constructs the Protocol Data Unit (PDU) or frame from the SDU by placing the SDU in
the INFO field of the frame. The SDU remains queued by the requested entity awaiting
for the receipt of a token. After the token is captured the station’s MAC transmits its
queued frames according to the rules of the token holding. [Ref. 19]

After the token holding station completes the transmission of frame or
frames, the MAC immediately issues a new token. The standard leaves as optional the
implementation of a MAC which may wait to see one or more frames return before

issuing the token.
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¢. Stripping

The stripping method of FDDI defines the frame originator as the station
responsible for frame removal from the ring. Since the decision to strip a frame is
normally based upon the recognition of the MAC’s address in the SA field, which cannot
occur until after the initial part of the frame has already been repeated, some remnants
of frames continue to circulate on the ring. These remnants consists most of the PA, SD,
FC, DA, SA, and six symbols after the SA field, followed by idle symbols. This
truncated frame will not cause problems to the ring because all other stations will
recognized these sequences of symbols as a remnant since they are followed by idle
symbols and no terminate symbol "T" will be received. With the formal specification
presented in this thesis the MAC Receiver establishes a check for remnants in every field
of the incoming PDU, which enhances the protocol error checkir.g specification. Also,
Chapter III will show that the stripping method in the normal operation of the improved
protocol is changed such that the Destination Address (DA) station is responsible for the
removal of Logical Link Control (LLC) or Station Management (SMT) frames from the
ring. This leaves less remnants fields of frames on the ring since the DA comes first in

a PDU sequence of fields.

3.  Service Specification
The service specification defines a set of functions that one layer or sublayer
entity provides to its users above or to management entities. These functions are defined

in terms of primitives and parameters. The primitives describe the operations carried




MA_DATArequest
MA_DATA indication

MA_DATA.confemation

PH_DATA request
PH_DATA Indication

PHY

SMT

Figure 6: Service Specification Related to MAC
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through the interface in which the service is provided. The parameters are associated with
the primitives and the execution of a service primitive depends on the exchange of
parameters between two entities. The services execution of the protocol observes a strict
hierarchy on the sequence of operations. At any given moment the allowed primitive and
parameter values depend on preceding history of operations. The model for protocol
specification used in this thesis is suitable to specify the FDDI protocol because it
represents precisely this sequence of operations. Although the standards specify clauses
with mandatory services they also specify optional services. Furthermore, the standards
accept as equally valid any implementation technique that causes the same external
behavior of the protocol. Figure 6 shows the set of services that MAC supplies to the
local LLC entity and SMT entity and also the services required by MAC from the local
PHY entity. The next paragraphs describe the contents of some primitives to illustrate
the service specification provided and required by FDDI MAC standard.

By using a set of fixed-length symbols, peer MAC entities communicate on
the ring. All protocol data units generated by peer Data Link Layer entities are matched
pairs of symbols. However, each symbol is sent across the Physical layer sequentially.
On the transmitting station, MAC conveys information to local PHY by a continuous
sequence of symbols via the defined primitives. In a MAC-PHY transfer of data, a
PH_DATA.request primitive is used and the parameter PH_Request(symbol) is sent to
PHY whenever MAC has a symbol to output as shown in Figure 7. Upon receipt of this
primitive the PHY entity performs the encoding and transmits the symbol. For every

PH_Request received from MAC, PHY returns a PH_confirmation to provide a
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synchronization of the MAC data output with the data rate of the medium and to indicate
its readiness to accept another symbol. On the receiving station, a PH_DATA.indication
primitive is used to define the transfer of data from PHY to MAC. This indication occurs
whenever PHY decodes a symbol. Also, the receiving MAC shall only recognize the

incoming PDU as matched pairs of symbols.

PH_indication(symbol) : PH_request(symbol)

MAC

PH_confirmation

Figure 7: The MAC-PHY Interface Service Primitives. MAC passes symbols to
PHY, which translates them into bits and then transmits the bits as optical signals.

SM_MA_CONTROL.request is a primitive used by SMT to control the
operation of MAC. Figure 8 illustrates this service primitive at the interface MAC/SMT

with a table that contains the parameters and its associated values.
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SM_MA_CONTROL.request(control_action, mac_frame_information, requested_status)
MAC - SMT
control_action mac_frame_information requested status
1. send_mac_frames indicates: indicates:
2. reset_mac DA, INFO Frame-Ct, Error_Ct,
3. control_mac_recovery Lost_Ct, TVX, TRT,
4. reset_frame_counters TTRT, R_Flag,
5. present_status current Receive State
6. control_ MA_DATA_request Machine,
7. control_MA_DATA_indication current Transmit State

Figure 8: The SM_MA_CONTROL.request service primitive

SMT generates this primitive to cause MAC to take the specified control
action. For example, if the control action is reset mac, then MAC generates the
MAC_Reset signal. This signal will be an enabling predicate for transitions to occur in
both MAC Receiver and Transmitter. The formal specification presented in this thesis
will show these transitions in the state diagrams and will describe them in the transition
tables.

As a response to SM_MA_CONTROL.request(control_action =
present_status) MAC provides the SM_MA_STATUS.indication service primitive to
SMT. This primitive contains a status_report parameter, shown in Figure 9. The FDDI

standard specifies some of the status_report parameters as optional. The work presented




SM_MA_STATUS.indication(status_report)

/—\mm
<

MAC > SMT

status_report

1. Receipt of a frame with distinct report of:

(a) for MAC frames - My_Claim, Higher_¢ Clmn.
Lower_Claim, My_beacon, Other_Beacon;

(b)* for LLC or SMT frames - My_DA_LDC or_SMT,
Other_DA_LLC_or_SMT,

2. Expiration of: TVX, TRT and late_ct # 0;

3. Receipt of: PH_Invalid, MAC_reset;

4. Overflow of a counter;

5. Ring_Operational; and
6. Other conditons specified in MAC FDDI standard.

(*) Not included in the original FDDI. Added in the
formal specification.

Figure 9: The SM_MA_STATUS.indicatidn service primitive
in the Chapter IV of this thesis requires a more detailed analysis of the actions taken by

the MAC state machines. Additional variables are included in the formal specification.

C. DESCRIPTION OF THE EXISTING FORMAL MODEL "SYSTEMS OF

COMMUNICATING MACHINES"

This section describes the model systems of communicating machines. This model
was designed as a method for the formal description and verification of communication
protocols [Ref. 8]. It has been used in the specification of local area network protocols
such as CSMA/CD and token ring [Ref. 10]. The model description given below is found
in [Ref. 9].

A system of communicating machines is an ordered pair C = (M, V), where
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M = {m;,m,,....m)}
is a finite set of machines, and
V= {v,v5...,v}

is a finite set of shared variables, with two designated subsets R; and W, specified
for each machine m,. The subset R, of V is called the set of read access variables
for machine m,, and the subset W, the set of write access variables for m,. The
integers n and k are the number of elements (machines and variables) in sets M and
V.

Each machine m;, € M is defined by a tuple (S,,s,,L;,N,,7), where

(1) §, is a finite set of states;

(2) s, € S, is a designated state called the initial state of m;;

(3) L, is a finite set of local variables;

(4) N, is a finite set of transitions names. Associated with each name is a unique
triple (p,a), where p is an enabling predicate on the variables of L; U R, and a is
an action on the variables of L, U R; U W,. Specifically, an action is a partial
function

aL XR-L XW,

from the values contained in the local variables and read access variables to the
values of the local variables and write access variables.
(5) 7,: §; X N, S, is a transition function , which is a partial function from the
states and names of m; to the states of m,.

Machines model the entities, which in a protocol system are processes and
channels. The shared variables are the means of communication between the
machines. Intuitively, R, and W, are the subsets of V to which m, read and write
access, respectively. A machine is allowed to make a transition from one state to
another when the predicate associated with the name for that transition is true.
Upon taking the transition, the action associated with that name is executed. The
actions changes the values of local and/or shared variables, thus allowing other
predicates to become true.

Let 7(s,,n) = s, be a transition which is defined on machine m,. (That is, 7 is the
edge pointing from state s, to state s,). Transition 7 is enabled if the enabling
predicate p, associated with the name n, is true. transition 7 may be executed
whenever m, is in state 5, and the predicate p is true (enabled). The execution of
r is an atomic action, in which both the state change an the action a associated
with n occur simultaneously.
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The sets of local and shared variables specify a name and a range for each. In
most cases, the range will be a finite or countable set of values. For proper
operation, the initial values of some or all of the variables should be specified.

D. PREVIOUS WORK ON IMPROVEMENT OF FDDI

1. Suggestions on Improvement of FDDI

This thesis continues the work on improvement of FDDI documented in [Ref.
11]. In that paper, Lundy makes the observations of little use of the secondary ring and
excessive frame propagation on the primary ring and he presents alternative transmission
procedures that can lead to a network throughput of three to four times of the standard.
This thesis takes the suggested procedures for transmission of frames that raises the ideal
upper bound to 300 Megabits per second to develop the improved protocol and provide
its formal specification. This subsection will review this previous work with additional
comments.

The suggested alternative transmission procedure attempts to increase
parallelism, decrease unnecessary frame propagation, and make maximum utilization of
all available fiber. The basic Timed-Token access method of FDDI is not changed. The
goal is to maximize the utilization of both rings by the Token Holding Station (THS), and
allow other stations to use an available segment of the ring concurrently with the THS.
The next paragraphs describe this procedure with illustrations.

Two main changes are proposed to improve the throughput in the FDDI
protocol: concurrent access, and simultaneous transmission on the dual ding. The first

change allows an additional frame to be transmitted in parallel on the same ring with the
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single frame allowed by the standard token ring protocol. The second change allows a
station in possession of the token to transmit on both rings, in opposite directions,
simultaneously. The first procedure is suggested as follows:

® Frames transmitted from station i to station j are removed from the ring by station

J rather than propagating around the ring. The frame is sent on the ring 1, which
has the shortest distance from i to J (Figure 10).

Figure 10: Step 1: frame transmitted from station i to station j and removed by J

® The acknowledgment from i to j is sent as a short message on the opposite ring,
(ring 2) also on the shortest path (Figure 11).

® The remainder of the ring may now be used for transmission of another message
in parallel with i’s message. Station i passes a "subtoken” to the next station gfier
station j, which specifies the first and the last stations on the "open” segment of the
ring. The subtoken is included as part of header of the frame sent to station j,
which transmits it (the subtoken field only) on to station j+1.

The subtoken gives the right to only one station to transmit on the unused
portion of the ring. If station j+ 1 has no messages for any station on the segment,
the subtoken is passed on to the next station. This is repeated until either one frame
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Figure 11: Step 2: the ack is sent back on the opposite ring and station j passes a
"subtoken" downstream on the freed ring segment.

is transmitted on the segment, or the subtoken dies at the last station.

The length of the frame sent on the "subtoken segment” must be limited so that
transmission will complete before station i finishes transmission to j and issues the
next subtoken. The length should be at most the length of the frame sent by the
station with the main token.

The second change from the transmitting protocol is to allow a station in
possession of the token to transmit on both rings, in opposite directions,
simultaneously (if it has more than one fraine to transmit). This implies that each
station must keep two queues for transmission, one for each ring. To avoid
collisions between frames the ring is partitioned by the destination address station
(Figure 12).

One of the main problems that occur with full dual ring operations is the

issue of distributing the load onto the two available rings. Lundy analyzes two criteria

for queuing up the frames in each ring. The shortest path and the load balanced among

the queues.
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Figure 12:Simultaneous Transmission on the Dual Ring.

The shortest path criteria would avoid collisions, however it is possible that one
queue would be longer than the other, so that parallelism and thus throughput
would not be maximized.

The other criteria, which the author believes to be preferred, is to keep the two
queues balanced. This is possible to do without collisions also; however it could
become necessary to move frames from one queue to the other, to avoid collisions
and keep the two queues in balance. [Ref. 11]

The criteria chosen to distribute the load in the protocol specified in this
thesis is the load balanced queue. In addition to these previous observations, the shortest
path is somewhat efficient for the simultaneous transmissions of the token holding station
in an ideal situation of matched queued load for both halves of the ring; however, for the
transmissions of the subtoken holding station the shortest path criteria is clearly
undesirable. If a subtoken holding station wishes to send its frames on the subtoken
segment which is greater than the one half of the total ring path then the shortest path
criteria cannot be applied to this station. Furthermore, if different criteria for distributing

the load in the token and subtoken holding stations is used, then the protocol overhead
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may substantially be increased. Therefore, it is assumed a load balancing algorithm
applied above the MAC layer to maximize the protocol efficiency.

This previous work forms the basis for the development of a more detailed
protocol MAC structure presented in Chapter III and its formal specification in Chapter
IV. The FDDI is a complex protocol and changes of this nature open several important
questions that need to be carefully analyzed. One of the questions is how to guarantee
the required reconfiguration capability of the network on a dual ring operation? Another
question is how the initialization process will work in the proposed partitioned ring
design. Also, it was stated that the dual ring of trees topology of FDDI offers the
flexibility and availability to meet many requirements. With the improved protocol is it
possible to maintain these similar features on a network? These and other questions are

discussed in subsequent topics covered in the thesis.

2. Other Work on Improvement of FDDI
The increasing need for high speed data rates in Local Area Networks has
lead to much work on improvement of token ring architectures including FDDI.
In [Ref. 1] Cidon and Ofek explain Metaring, a network that uses a full-
duplex ring with spacial reuse and concurrent access to achieve higher throughput rates.
This network employs two basic modes of operation: buffer insertion for variable sizes

PDUs and a slotted ring for fixed PDU.
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There are similarities and differences between Metaring and the improved

protocol presented in this thesis. Table 2

presents an overall summary of points in

common and contrasts between these two protocols.

TABLE 2: SIMILARITIES AND DIFFERENCES BETWEEN METARING AND THE

IMPROVED FDDI PROT OL
Metaring

® To improve throughput

Uses both rings for concurrent access and
disjoint ring partitions for simultaneous
Four nodes transmitting at the same time in
each direction on both rings.

Maximum throughput: 800 Mbps

disjoint ring partitions for simultaneous
transmissions.

Two nodes transmitting at the same time. The
timed-token node transmitting in each direction
on both rings; and the subtoken node
transmitting in either one or other direction
within its segment.

Uses both rings for concurrent access and
Maximum throughput: 300 Mbps

@ Distributing traffic across the two rings and stripping method

(a) Shortest path; and
(b) Frames removed by Destination Address.

normal operation and removed by Source

(a) Load balancing algorithm; and
(b) Frames removed by Destination Address in
Address in "wrap condition.*®

@ Faimess

Use of single control message rotating in the
opposite direction to the data traffic that it

Use the same mechanism of FDDI, the timed-
token access method; which has been proven to

regulates, be fair and deterministic.

© Access control to the physical medium
Two access modes: Timed-token controlled concurrent access which
(a) Buffer insertion for PDU of variable size; employs:
and (s) One main Token for the two segments on
(b) Slotted ring for fixed PDU. both rings controlling simultaneous

transmissgions; and

{(b) One subtoken on the third segmeat of the
ring controlled by the token holding station for
transmissions within this segment; thus, this
access method allows concurrent transmissions

on disjoint segmeats of the ring.

® Ring scheduling and priorities
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Allows both classes of service: synchronous and

Allows both classes of service: synchronous and

asynchronous; and asynchronous; and
Allows priorities. Allows priorities.
© Addressing
Arranged in an increasing order (1..n) Same as in FDDI —]I

@ Problems of access control

(a) May suffer from starvation - solutions are
presented

The timed-token controlled concurrent access
avoids the problem of starvation since the three
segments of the ring used for concurrent
transmissions are logical disjoint parts for ring
access. There are only two transmitting nodes
at a time: the tokea and the subtoken holding
station. The token holding station controls the
duration of the subtoken.

(b) Bandwidth reservation - problem of how to
guarantee delay to some of bandwidth, while
still allowing asynchronous distributed access.
Solution discussed.

No bandwidth reservation problem. Uses the
same mechanism for service assignment
employed in FDDI. First, allocates synchronous
bandwidth, thea asynchronous.

| (c) Priority - the distributed nature of the access
| is not allowing the implementation of a priority
| access scheme. Solution discussed.

No priority problem.
Same priority scheme used in FDDI.

(d) Delay bounds - problem associated with
buffer insertion architecture.

Same delay of FDDI.

One of the key characteristics of FDDI is its reliability feature embedded in

the dual ring architecture. Although the improved protocol makes use of both rings

during normal operation and uses the destination address to remove a frame, when a link

or node fails the protocol switches the frame stripping mechanism and works as in the

original FDDI using only one path. Therefore, this is one of the main advantages of this

protocol. The improvement achieved in utilization does not degenerate the reliability

function of FDDI.

In [Ref. 16] Strohl briefly discusses the variety of choices on using FDDI’s

dual ring. Among those choices, the protocol developed in this thesis fits in the category




of using the second ring for traffic in normal operation. However, by design decision,
the MAC structure of this protocol differs from the current structures of MAC used in
the original FDDI; consequently, different analysis can be done. Unlike the suggestion
for the use of both rings employing dual MAC stations to potentially achieve a bandwidth
of 200 Megabits per second, this thesis developed a protocol that uses a single MAC to
control simultaneous access to both rings. This single MAC structure is presented in
Chapter III. Chapter III will also show that with the use of a single MAC controlling the
operation of both rings this protocol enhances the end-end connectivity through ring
configuration changes.

Other work on improvement of token ring networks have appeared on the
literature. In [Ref. 5] Kamal proposes the use of multiple tokens to circumvent the
problem of excessive delay under a very light network load. Again, among other
differences, this multiple token network differs from the protocol proposed in this thesis
primarily in the medium access control method. In [Ref. 15] Siegel analyzes hardware

and software functions for a dual ring operation in FDDI. An architecture for an

enhanced FDDI station for traffic acceptance and distribution is presented.




1. THE IMPROVED FDDI PROTOCOL
This chapter describes the improved FDDI protocol. Section A introduces the
improved FDDI MAC/PHY structure, the changes needed in the original MAC, and the
new protocol data units formats. In section B, the mechanism of access control which

enhances ring utilization is presented.

A. PROTOCOL DESCRIPTION

Although the protocol described in this thesis differs from the original FDDI in the
utilization of the medium, many other characteristics of operation are the same in both
protocols. This includes the timed-token access method. Stations wait for a passing token
to transmit their data. They agree in a target time for a token rotation. The timers TRT
and THT and the counters work in the same fashion. The processes for claiming a token,
ring initialization, and beacon remain unchanged. The Ring scheduling for the improved
protocol supports both classes of service as in the original FDDI. In fact, the key
difference between the two protocols is the use of a second access control Protocol Data
Unit, called "subtoken”, which gives the right to another station to transmit concurrently
with the timed-token station, potentially improving ring utilization. However, the
employment of this special PDU in the improved protocol is controlled by the MAC
station that is holding the main token; the parallel access to the medium granted by the

subtoken does not interfere with the access given by the main token. In addition, this
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protocol also uses the second ring to carry out simultaneous transmission increasing the

network throughput to a maximum of 300 Megabits per second.

1. The Improved FDDI MAC/PHY Organization

To achieve the high performance with simultaneous use of both rings this
protocol uses an specific structure for the trunk ring MAC/PHY local entities. Figure 13
depicts this structure. This figure shows a single MAC to control services provided from
both physical layers. This structure requires a Dual Attachment Station (DAS) with a
single MAC. The high throughput achievement is essentially based on the use of the dual
trunk ring; therefore, slave stations which are single attached to concentrators will take
advantage of the improvement, however they do not contribute to this process. The
proposed solution for the problem of Single Attached Stations (SAS) with the
simultaneous use of both rings in this protocol is to provide a Dual Attached
Concentrator (DAC) with an enhanced MAC capability. This MAC has the same
structure of all MACs of Dual Attached Stations on the trunk ring with an additional
capability to respond for each of its slaves as if each slave is directly attached to the dual
trunk ring.

The single MAC organization adds a degree of complexity; however, the
benefits overcome this cost. Synchronization of both rings in a data transfer at 100
Megabits per second is a challenging problem to solve in an FDDI implementation that
uses dual MAC; however, with a single MAC controlling both ring transmissions this
problem seems to have a feasible solution. In FDDI, a station MAC placed in one ring

is not allowed to communicate with a MAC placed in another ring. In the protocol
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LLC

Figure 13: Structure of Local Entities in the Improved FDDI (Single-MAC-Dual-PHY).
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developed in this thesis, the solution proposed for a dual ring operation is a Single-MAC-
Dual-PHY structure. This unique structure has to be more complex than the current
structures specified by FDDI. Due to its complexity, this Single-MAC-dual-PHY
structure can be a subject for more work conducting an in depth analysis.

One advantage of a single MAC to control the operations of both rings is the
enhancement of end-end connectivity through ring configuration changes. In [Ref. 16]
Strohl analyzes two troublesome cases for a dual MAC station to ensure connectivity if
both rings are used for data transmission. The problem deals with determination of the
correct MAC to maintain communications through configuration changes (WRAP to
THRU and THRU to WRAP). The Two cases are:

® The ring is in a WRAP condition and two stations establish a connection. Then,
the configuration changes to THRU. The connected MAC can no longer
communicate since they are on different rings. The problem is determination of
MAC placements of a dual MAC wrapped station when the configuration changes
to THRU in order to choose the correct MAC to maintain communications.

® The ring is in a THRU condition and two stations establish a connection. Then,

one of these stations wraps with one of the connected MAC off of the wrapped
ring. This disrupts the communication path.

With a Single-MAC-Dual-PHY structure these problems no longer exist since
if a configuration change occurs on the network this MAC continues in the path to allow
stations connection. Therefore, this MAC/PHY structure enhances end-end connectivity
through configuration changes. Connectivity is never lost with a single MAC controlling

access to both rings.
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2. Changes in the Original Protocol

To allow concurrent access to the physical medium and simultaneous use of
both rings two basic changes are implemented in the original FDDI. The first change is
the establishment of dynamic logical partitions on both rings. As a result of these
partitions, a change in the method of striping the frames from the rings is necessary.
Three logical segments divide the physical medium in the improved protocol. Figure 14
illustrates these partitions. Three stations on the ring form the vertices that join the three
segments. One station is the token holding station (THS), which captured the token.
There will be only one token circulating on this dual ring network. The token holding
station establishes the ring partitions by transmitting frames simultaneously on both rings
in opposite directions. The Destination Addresses (DA) contained in each of the two
frames establish the two other vertices on the partitioned rings. The segment of the rings
not covered by transmissions of the token holding station can be used by a second station
to transmit its data concurrently on the ring. Therefore, two stations can access different
parts of the medium at the same time.

Concurrent use of the physical medium requires changes in the method of
frame removal from the ring and acknowledgments of frame received. In FDDI, all
frames make a complete rotation on the ring and are then removed by the their
originators. The advantage of this procedure is simplicity. The disadvantage is the
innefficient use of resources; even after being copied by the destination address station
the frame is repeated from node to node all the way to the originator. On the average

half of the transmission time is used for frame repetition from node to node after the DA
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Subtoken segment
Figure 14: The three physical medium logical partitions

node has copied the frame. The allocation of a second ring which remains unused during
normal operation further aggravates this situation of inefficient use of resources. In the
improved protocol, with the exception of MAC frames, which need the full ring to
perform the Ring Initialization, Claim, and Beacon processes, other frames are not
repeated on the ring all the way up to its originator. Instead, these frames are removed
by the destination address stations. This procedure allows the use of a freed segment of
the ring to be used by any station within that segment concurrently with the main token
holding station. The acknowledgment is sent by the destination address station on the
opposite ring in a segment that is not being used. As opposed with the acknowledgment
embedded in the frame, which is repeated downstream up to the frame originator, the
new MAC employs a short fixed-length PDU that goes back on the opposite ring
immediately after the frame is copied. This PDU carries no information field but only
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the necessary sequences of symbols for the frame originator MAC to provide status
report service to other entities.

The concurrent access to the physical medium is controlled and synchronized
to avoid collisions. Stations may have many PDUs queued each with a different
destination address. Also, frames are variable in length (duration); some can be frames
of short duration other can be in the order of a maximum length allowed in the protocol.
Therefore, a mechanism to manage the use of space and time is needed. The solution
adopted by this protocol is to provide another type of PDU that controls the access of the
second transmitting station while the first station is accessing the ring during normal
operation. This PDU called "subtoken" is controlled by the main token holding station.
This station generates subtoken information for concurrent transmission on the unused
segment of the ring. The next subsection presents the subtoken and the acknowledgment

format.

3. Protocol Data Units (PDU) Formats
In addition to frame and token formats used in the original FDDI, this
protocol adds two other fixed-length PDU formats: subtoken and acknowledgment. The
purpose of the subtoken is to grant stations the right to transmit on the unused segment
of ring. Therefore, the subtoken contains fields establishing physical limits for
transmission on the ring. Its format also includes a field that gives the maximum duration
allowed for one or more frames to be transmitted concurrently with the frame of the

token holding station.
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The acknowledgment is a short fixed-length PDU that returns on the other
ring in opposite direction from the data frame. The acknowledgment is sent after the
receiver on the ring of the incoming frame copies this frame into its input buffer.

Figure 15 depicts the subtoken format. The starting sequence (PA field and

SA field) is the same as in frame or token. The subsequent fields are as follows:

PA |SD| FC | SL | EL|CLASS|ED

I CLFF 12222
Iy - Ipag] 7 lK K 4n or12q4n ori2 22 TT

Figure 15: Subtoken Format

® Frame Control (FC) - consists of eight bits (two data quartets) specified by the
following bit format: CLFF ZZZZ, where for the subtoken they are 1111 0000.

® Start Limit (SL) - consists of four or 12 data quartet symbols to indicate the
address of the station where the subtoken starts to be valid for use.

® Ending Limit (EL) - consists of four or 12 data quartet symbols to indicate the
address of the station where the subtoken stops to be valid for use.

® Frame Class (CLASS) - consists of two data quartet symbols to specify an upper
bound for the length of the frame to be sent by the station that is holding the
subtoken

® Ending Delimiter (ED) - same as in token; consists of a pair of symbols (T) to

indicate a subtoken ending. This field is necessary to provide a criteria for
acceptance of a valid subtoken. The ED must be met before a subtoken is accepted.
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Beginning with the Start Limit address, the subtoken is "captured” or passed
on from station to station downstream on the ring until it reaches the Ending Limit (EL)
address. If the Ending limit station does not use the subtoken then this station strips it
from the ring.

This protocol employs the CLASS field in the subtoken to provide
information ror ring scheduling on the partitioned segment of the ring. Classes represent
time duration of frames. Figure 16 depicts the formation of classes. As the figure

illustrates, classes can be a step-wise or sampled discrete function of frame length.

() Step-wise (b) Sample-discrete
class class

»Co o—————— >
0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

frame length in octets frame length in octets

Figure 16: Classes as a Step-wise or Sampled-discrete Function of Frame Length
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In the step-wise representation of Figure 16, 10 classes beginning from zero
through nine are mapped to intervals of frame lengths in multiples of 500 octets from
zero through the maximum frame length of 4500 octets. The third Class C, in this
example corresponds to a number of symbol times calculated £5r the interval (500, 1000]
of octets. If a step-wise formation of classes is adopted the number of classes could be
implementor defined. In this case, the granularity of classes could depend upon the size
of files used in the application for the FDDI network. In the sampled-discrete case, there
are virtually as many classes as discrete sizes of frames; however, for short frames it is
reasonable to consider a mapping to a zero duration class because these framies of short
duration cannot be used in the process of concurrent access.

Classes are measured in number of symbol times at 100 Megabits per second.
The number of symbol times for each class must be determined for the network to ensure
adequate transmission of data concurrently on the ring.

The main token holding station establishes the class of the subtoken according
to the length of the two frames which are transmitted simultaneously. The token holding
station assigns a subtoken Frame Class that corresponds to an interval of frame length
calculated by that MAC station based on the both frames queued for transmission. In the
next subsection, algorithms to generate classes for the life of subtoken are discussed. The
station that uses the subtoken can only transmit a frame during the extent of that received

frame Class.
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Any station which address falls within the subtoken limits may gain the right
to transmit by capturing the subtoken. However, this may only occur under the following
conditions:

@ The candidate station may only transmit frames addressed to stations that are
physically within the limits established by the subtoken fields SL and EL of that
particular subtoken.

® The candidate station may only transmit frames that have length bounded above by
the class of frame defined by the subtoken field CLASS of that particular subtoken.

These conditions avoid collisions and allow controlled concurrent use of the
partitioned rings.

Figure 17 depicts the acknowledgment format. The acknowledgment follows
the same format pattern of a frame in the original FDDI protocol, except that the INFO
and FCS fields do not appear. The Destination Address (DA) in the acknowledgment
format corresponds to the address of the received frame originator, and the Source
Address (SA) corresponds to the station that is forwarding the acknowledgment.

The Ending Delimiter (ED) and Frame Status (FS) fields are the same as in
the frame; however, the FS field in the fixed-length acknowledgment consists of exactly
the three control indicator symbols for Error Detected (FS.E), Address Recognized
(FS.A), and Frame Copied (FS.C). There is no trailing terminate "T" symbol after the
FS field symbols since one "T" symbol from the ED field plus three control indicators

of FS field form a sequence of symbol pairs required by MAC FDDI standard.
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PA|SD| FC |[DA|SA| ED| FS

| CLFF 12772 _E,AC
Iy - Ipaxd J | K| n iE 4 or12n4n ori2y T 3 S/R

Figure 17: Acknowledgment Format

A different procedure adopted on the process of acknowledgment contributes
to still more improvement. This difference is in the way the acknowledgment is routed
to the originator. In the original protocol, the receiving station matches the DA field to
its own address, copies the frame and sends the acknowledgment inside the frame on the
primary ring. In the improved protocol, after the receiving station scans the received
Destination Address (DA,) and a match occurs with its own address, it strips the frame
from the primary ring as it is copied to the local entity. After the frame is received and
copied the station transmits an acknowledgment back to the originator on the opposite
ring. This procedure avoids unnecessary frame propagation and it frees a segment of both

rings for the candidate stations to use the subtoken on that part of the rings.

B. THE TIMED-TOKEN CONTROLLED CONCURRENT ACCESS
The format of the additional protocol data units have been described. Provided that
information, this section presents a more detailed description of how concurrent access

with simultaneous transmissions on both rings can be achieved in this protocol.
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The main token holding station is responsible for providing the necessary
information to allow other station’s MACs to work cooperatively on the dual ring. This
is accomplished as follows. Assume that there is synchronous traffic queued for
transmission. The traffic is distributed for transmission among the two physical medium
using a balance loading algorithm to improve efficiency. There are two queues for this
service; one for each ring. The Service Data Units (SDU) are placed in the frames and
enqueued for transmission. The process begins when a passing token is captured by a

station as in the original FDDI as shown in Figure 18.

Token Halding Station
frame with subtoken __V R token captured
— e =i -
Squewe /
-—
MAC

Figure 18: The Token Holding Station Simultaneous Transmission on Both Rings

This station begins transmission of the two head queued frames simultaneously on
both rings. One of these two frames will carry additional inforination to allow a posterior
formation of the subtoken as a separate PDU. This frame will be the frame with

subtoken. The other frame is transmitted simultaneously on the opposite direction without
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the subtoken information. The MAC Transmitter in charge of creation of the frame with
subtoken inserts the Destination Address (DA) from the frame without subtoken, queued
on the other ring, in the first eight or 12 symbols of the frame INFO field. The DA will
become the subtoken Ending Limit (EL) in the subtoken PDU format. Furthermore, the
Transmitter will insert immediately after these symbols, the duration measured in symbol
times at 100 Megabits per second that a station will be allowed to transmit when using
the subtoken. This duration corresponds to a CLASS value in the subtoken format.
Figure 19 depicts the contents of the frame with and without subtoken information. The
figure shows the formation of the subtoken contents. The two types of frames are
summarized as follows:
® Frame with subtoken - issued by the token holding station only. It carries the
subtoken information and the Service Data Unit. When the protocol is in the
"WRAP" mode the token holding station does not issue frames with subtoken.
® Frame without subtoken - issued by either the token holding station or the subtoken
holding station. This frame is the same as the employed by the original FDDI.
Once the frame with subtoken reaches the destination address (DA) station the
subtoken is ready to be used by any station within the ring segment limits beginning from
this DA station up to a Ending Limit (EL) station established by this field in the subtoken
format. Therefore, the first candidate station to use this subtoken is the frame destination

address station itself.
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Figure 19: Formation of Subtoken Contents

1.  Algorithms to Generate Subtoken Duration (Class)

Two algorithms to generate the duration of the subtoken are presented. The
first algorithm is simpler, generates less number of subtokens; consequently, imposes less
overhead. However, if head queued frames on each ring differ substantially in length one
segment of the ring may become unusable waiting until completion of other ring frame
transmission. The subtoken duration in this algorithm is calculated based on the largest
cf the two frames. The second algorithm has one step more than the first one, generates
more subtokens and can make more use of the ring; however, adds more overhead. The
next paragraphs will present the initial assumptions and the two algorithms with practical

illustrations of their first iterations.
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Assume that Class is the same as frame length. Also, assume that a station
has captured a token and is ready to initiate its simultaneous transmissions on both rings
with the load balanced on both queues. The first algorithm is described as follows:

® Get the Class from the head of the queue for the primary ring and the Class from
the head of the queue for the secondary ring.

® Compare these last two Classes. If they are equal take this value; otherwise, choose
the largest of the two Classes. The value chosen becomes this subtoken duration
(Class).

® After completion of frame transmission go to the first step. Repeat the process until
either the station completes its transmissions or the synchronous bandwidth
allocation for this station transmissions terminates or the THT expires.

Figure 20 illustrates the first two iterations of the algorithm. The figure
shows a bar chart that represents frames enqueued for transmissions on both rings and
the resultant duration of the subtoken. In addition, the figure shows a dual ring
architecture with 20 stations and the simultaneous transmission carried out by station
number one, which holds the token. Numerical examples are shown to enhance the
illustration.

In this algorithm the subtoken can go in either direction; however, it is
assumed by default that it goes in the same direction of the token. In this example, the
first subtoken can be used by any station beginning from address three up to address 15
and it allows transmissions within these limits that take a maximum of 1500 octets. Note

that this duration corresponds to length of the frame queued on the primary ring. Since

the frames have unequal length, one segment will complete its transmission earlier than
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Figure 20: Illustration of the first Algorithm

the other; consequently, this segment will wait for the completion of the other when both
reinitiate a new simultaneous frame transmission. The figure shows the four timing steps
on the dual ring operation during the allocated bandwidth.
The second algorithm makes full time use of both segments. It is described
as follows:
® Get the Class from the head of the queue for the primary ring and the Class from
the head of the queue for the secondary ring.
® Compare these last two Classes. If they are equal take this value; otherwise, choose
?(1;1 as:sc)).rtcst of the two Classes. The value chosen becomes this subtoken duration

® Save what’s left over from the last comparison as a last Class.
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® Get the next Class from the queue for the ring which had the last shortest Class
and go to the second step. Repeat this process until either the station complete its
transmissions or the synchronous bandwidth allocation for this station transmissions
terminates or the THT expires.

Figure 21 illustrates the application of this algorithm for the same data
presented in Figure 20. In this algorithm, the subtoken goes on the ring that last
terminate a frame transmission. An exception for this condition is the first simultaneous
frame transmission or when there is a match such that both rings reinitiate their frames

transmissions at the same time. In this case, the subtoken can go in either one or another

ring.
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Figure 21: Illustration of the Second Algorithm

Figure 21 shows that the second algorithm increases utilization of both rings
since one ring does not wait the opposite ring to complete the transmission of its current
frame. As the illustration shows, there is a saving in the bandwidth for simultaneous
transmission if compared with the previous example. Also, the illustration shows that this
algorithm increased the number of subtokens generated by the token holding station.
However, this algorithm leads to less use of the subtoken ring segment. When the
calculated duration of the subtoken becomes too short the token holding station might not
issue this subtoken; consequently, some available time on this third segment of the rings
is not used. In addition, this algorithm imposes more overhead as a result of these

decisions and the increased number of subtokens with short durations.
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This thesis uses the first algorithm in the formal specification of the improved
protocol. This decision was primarily based on the simplicity of the first method. Both
algorithms increase throughput and a more complete analysis such as the use of a

simulation model would enhance the list of pros and cons for each method.

2, Destination Address Station Actions

The MAC station corresponding to the frame destination address (DA) is
responsible to take several actions in this process of concurrent ring access. First, it
scans the field contents of the incoming frame and checks the Frame Control (FC) to
verify the type of PDU; note that in this protocol the FC field is also used to differentiate
frames that carry subtoken information from frames that do not include it. Second, the
station matches the frame DA with its own address and begins to copy the frame into its
receive buffer while taking actions to remove this frame from the ring. If the frame
contains the subtoken contents then the station may use the subtoken or not. In the case
of subtoken use, the station immediately begins transmission of its PDU downstream on
the ring while receiving the data upstream from the token holding station. The timing
mechanism of concurrent access shall work such that it is expected that the traffic
downstream terminatcs before the traffic upstream and both stations had received an
acknowledgment back on the opposite ring. Finally, in the case of unusable subtoken the
station immediately extracts the subtoken contents from the frame and issues the subtoken
as a separate PDU downstream on the ring to be used by another station on the freed ring

segment.




]

Stations pass the subtoken if they can not use it. The subtoken passing process
continues until it reaches the last station on the unused segment when this station finally
removes the subtoken from the ring. If the subtoken is used before it reaches the ending
limit the station that uses the subtoken is responsible for its removal from the ring (i.e.,

the subtoken is not reissued). The subtoken can be used only once.

3. Reconfiguration

An important issue to discuss is the reliability provided if the changes are
implemented in the FDDI protocol. Basically, FDDI provides fault tolerance with a dual
counter-rotating ring because of its "WRAP mode," in which stations reconfigure to
isolate a serious ring or node failure. In this case, the dual logical ring becomes a single
path allowing communication to continue.

The improved protocol also provides this feature but with the loss of
enhanced ring utilization. *"WRAP" is a property of a station in the original FDDI;
however, an overall network-controlling function can monitor the network to detect
station’s wrap. The stations on either side which reconfigured to isolate the failure notify
SMT and a global variable Wrap is set to true. The stations recognize that only one
logical ring is active and the stripping of frames revert to the original FDDI with the

acknowledgment sent inside the frame.
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IV. FORMAL SPECIFICATION
This chapter presents the formal specification for the Media Access Control (MAC)

protocol developed in this thesis using Systems of Communicating Machines.

A. BENEFITS OF A FORMAL SPECIFICATION

One of the main purposes of a formal specification is to provide enhancements in
its interpretation. One of the problems pointed out in the interoperability issue is that the
interpretation of the standard itself is ambiguous [Ref. 14]. Among other problems, the
following example was given:

It appears to be possible to take in the symbol sequence I J I, which is an error
cpndition, and still conform to the FDDI standard. This causes oscillations of the
ring.

A formal model such as the one used in this thesis helps to identify and isolate
problems of this nature. To illustrate this specific case, the model specifies a MAC
receiver checking for a strip on the incoming symbol sequence which forms the SD field
of the PDU. Since there is an "I" symbol after the "J" symbol it means that a transition
Strip on SD holds true on the Receiver. (see MAC Receiver state diagram and transition
table). The MAC Receiver sends a signal "Idle" to the Transmitter and enters the
AWAIT SD state. The receipt of "Idle” signal from the Receiver enables a transition Tx
Idle Symbols on the Transmitter side which enters the IDLE state. Symbols are checked

one by one leaving no ambiguities.




The model Systems of Communicating Machines can also be applied to the
specification of the protocol physical layer and in this case the sequence of operations
would consider the code bit level. This provides a better document interpretation and
contributes to interoperability in multivendor computing environments.

The FDDI Media Access Control standard presents subclauses containing the MAC
structure functional specification. The MAC structure defines two asynchronous processes
that work as co-operating state machines, called the MAC Receiver and the MAC
transmitter. The standard presents the overall processes operation in the form of state
diagrams and attached notes. These diagrams show the transitions that take place between
the states. In addition to state diagrams the standard uses prose in the specifications,
although it states that the state diagrams shall take precedence in the event of any
discrepancy. The standard provides all the specifications but lacks the use of a formally
defined model in its protocol specifications.

The MAC specification used in this thesis has some similarities and differences
from the MAC specification used in the FDDI MAC standard. They are similar in that
both use processes of co-operating machines represented in state diagrams. They use the
similar terminology as defined in the previous subclauses of the MAC and other FDDI
standards. They differ in that the specification presented in this thesis uses a formal
model. The model is used to specify the entire protocol; however, it also applies to
hierarchies of small independent modules such that it captures the aspects of the protocol
behavior and structure relevant to the development team. Furthermore, the application

of the formal model forces a much more detailed consideration of the protocol which
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makes the functional specification more precise. This technique provides a refinement of
the MAC protocol specification.
The formal specification of the Media Access Control protocol contributes to

enhance the standard functional specification in several ways:

® Provides precise control over each protocol module or state behavior.

® Improves understanding of the protocol functionality. Modules are understandable
in isolation. For a complex protocol such as FDDI, this is a desirable property.

® Reduces documented protocol ambiguities. The decomposition into small
independent modules provides a clear relation between each module and the
protocol functional specification.

® Confines changes in design decision to a single module. If the protocol needs
changes then this will not depend on the entire specification.

® Provides means to conduct a protocol analysis for its correctness. Proofs for
protocol correctness can be established.

o Easier to test the protocol. Decomposition and modular specification simplify
testing of each protocol module.

The decomposition of bigger states into a hierarchy of smaller states obtaining a
precise control of the a state behavior simplifies the description, protocol verification and
implementation. The control over each state is a good feature for identification of
malfunctions within each state. This allows development of protocol test procedures,
verification and error checking. The understanding of protocol functionality is improved,
since at any given moment a transition from one state to another can be checked by
following the preceding history of operations in the hierarchy of states and the transition

table logical sequences.
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The formal definition of each logical operation in separate states avoids documented
protocol ambiguities and improves interpretation for implementation purposes. The
functional specification for MAC frames in the Receiver are treated differently from the
specification of LLC frames because some actions will not be the same for both types of
frames. These are treated in different protocol modules. Even states that perform similar
functions receive individual treatment within each branch of the transition state diagram.

One relevant question is how deep the decomposition into smaller states will be?
Does the number of states and transitions increases to a point such that it becomes
unworkably large? The decomposition of states will go up to the level where no
ambiguity is left. All the internal events described in the standard documentation which
cause an action are considered. A modular decomposition allows an easier
implementation of large systems.

Since the specification goes to a deep level of details in terms of transitions and
states, it is impractical to explain all these details in one chapter. The reader is
encouraged to study the MAC FDDI standard specification. The changes implemented
in FDDI to achieve the improvement will alter some modules of the original FDDI;

however, the overall functions are the same.

B. MODELING THE IMPROVED PROTOCOL

1. Notational Conventions

The following notation is used in the transition tables:

® v : logical or




® A : logical and

® - : Jogical not

® > : such that

® € : member (element)

® Ae«B : places the current value of B into A

In the state diagrams, states are represented by bubbles and transitions by
arrows. A state is numbered by a letter-number and is named with capital letters which
appear inside the bubble. The letter-number is organized within each module of the
diagram such that the letter corresponds to the first letter of the module name and the
number corresponds to the number of states within the module. A transition is named
with lower case letters (except for the first letter or acronyms used to form the name) and

appears in the right side of the arrow between two states.

2. The Communicating Machines
Figure 22 depicts the communicating machines. There are four machines that
work cooperatively on both rings. At the node i the machines T;1 and R;1 are
respectively the Transmitter and Receiver on ring 1 while T2 and R?2 stand for
Transmitter and Receiver on Ring 2. Machines in one ring are symmetric with machines
of same name on the other ring. This allows for the MAC to choose either one or the
other ring to circulate the main token. Also, this property allows the representation of

states for only one Receiver and only one Transmitter.
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Node (i-1) Node (i) Node (i+1)

Teiv1)1

_f_g

| R(i+1)2

Figure 22: The Four Communicating Machines of a Network Node

Receivers and transmitters behave differently in the communication process.
While a Receiver communicates simultaneously with both Transmitters a Transmitter can
only communicate with a Receiver on the same ring. A simultaneous communication of
a Receiver with both transmitters means that actions taken by a Receiver are visible to
both transmitters. However, the Media Access Control establishes the control of the

action based on the nature of this action and its originator.

3. Modeling The Interface Operations
There are four operations on the FDDI network specified by this formal
model. These are receive, receive-copy, repeat, and transmit symbols.
Figure 23 illustrates the logical operations carried out in a single-MAC-dual-
PHY interface. For each ring there is one input variable of type buffer denoted as
PH_Indication(symbol) and one output variable of type buyffer denoted as

PH_Request(symbol). These are shared variables through which the machines
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communicate. Each name is an analogy to the service primitive provided at the interface
MAC/PHY. Symbol is a pointer associated with these buffers. The pointer locates a
symbol on the array of symbols and is sequentially incremented at each new symbol
arrival on the receiver side or new departure on the transmitter side. In this model, a
variable of type buffer is specified by:

type buffer: array[1..MFL+1] of symbol;
where MFL is the maximum frame length.

Each transmitter maintains other variables of type buffer dedicated for
transmission of its PDU queued. The synchronous service is provided with the S-
buf(symbol) and the asynchronous with the A-buf(symbol). Each receiver uses the R-
buf(symbol) to copy the PDU that matches with the station’s address.

In the receive symbols operation, bits from the ring enter the interface
through the line receiver into the PH_Indication(symbol) buffer in a serial fashion. These
bits form the symbols that are read in the interface PHY/MAC. The symbol pointer is
incremented to the next symbol and a symbol counter is maintained. For the receive
symbols of a frame the operation is represented as follows:

® PH_Indication(symbol) = { PA[I,..L_], SD{J,K], FC,[n,n], DA [4n V 12n],
SA[4n Vv 12n], INFO/[n,..n,,], FCS [8n], ED[T], FS.E[S/R], FS.A[S/R}], FS.C,[S/R]

® symbol < symbol + 1;
® symbol_ct « symbol_ct + 1;




In the receive-copy symbols, in addition to the previous operation bits are
copied by the Receiver into its receive buffer. This operation is represented as follows:

® PH_Indication(symbol) = { PA[I,..I..], SD,{J,K], FC,[n,n], DA,[4n V 12n),
SA[4n Vv 12n], INFO,[n,..n,,,], FCS,[8n], ED,[T], FS.E[S/R], FS.A[S/R], FS.C,[S/R]

® Rcv-buf(symbol) « PH_Indication(symbol);
® symbol « symbol + 1;

® symbol_ct « symbol_ct + 1;
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Figure 23: Logical Operations
In the repeat symbols operation, after a delay these bits are retransmitted by
the Transmitter over the ring from the interface MAC/PHY either unchanged or after
some modification. The representation for repeat token symbols is as follows:
e PH_Indication(symbol) = { PA[l,..L], SD[J, K]}, FC[CLFF,ZZZZ), ED[T,T] };
® PH_Request[symbol] « PH_Indication(symbol);
® symbol < symbol + 1;

® symbol_ct « symbol_ct + 1;

In the transmit symbols operation, bits are transmitted serially from the

interface over the ring. These bits come from the appropriate buffers (synchronous or
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asynchronous) and sent to the line driver for transmission out of the PH_Request buffer.
The representation for a transmission of synchronous frame symbols is as follows:
® S-buf[symbol] = { PA,[I,..L], SD,[J,K], FC,[CLFF,ZZZZ], DA [4n or 12n],

SA,[4n or 12n], INFO,[n,..n,.,], FCS,[8n], ED,[T], FS.E[R/S], FS.A [S/R], FS.C,[S/R]
}

® PH_Request[symbol] « S-buf[symbol];
® symbol « symbol + 1;

® symbol_ct « symbol ct + 1;

4. The MAC Receiver Operation and Specification

The MAC Receiver machine performs several operations upon receipt of
symbols of an incoming PDU. It receives the information from the ring, detects format
errors on the field sequences which form each type of PDU, checks frame validity
criteria and sends appropriate signals to the Transmitter.

As the symbols of the incoming PDU arrive in a serial transfer from the
Physical Layer (PHY) to the Media Access Control Layer (MAC) the MAC receiver
machine scans the input, in order to take the appropriate action as required. Figure 24
illustrates how the MAC receiver performs these operations.

The PH_Indication(symbol) appears on the left-hand side of the figure. The
right-hand side shows the format of the incoming PDU and the sequence of transitions
that occur whenever the corresponding enabling predicate associated with each transition
holds true. For example, when the first Idle symbol of the incoming PDU arrives at the

PH_Indication(symbol) buffer a Signal Starr transition occurs and the Receiver takes the
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appropriate actions. In general, an action can be described as a signal sent to the
Transmitter; a flag setting; a variable status change; or an integer type variable increment
such as counter, timer, or pointer increment. In this example, one of the actions
corresponding to the Signal Start transition is the increment of the symbol pointer to the
next symbol of the sequence. In this sense, the Receiver continuously scans the incoming

stream of symbols up to the last symbol that forms the complete PDU.

Incoming PDU

P

PH_ Indication(symbol)

MRS .
% jawm
i 4a or 12a as keY
EREER S
symbol pointer %3 gg g :9
i

Figure 24: The Four Types of PDU

This specification is more detailed than the standard because in this model
every PH_Indication is considered. This corresponds to a decoding of every symbol from
the physical layer. For example, when the Receiver departs from the LISTEN (RO) state

to the AWAIT SD (R1) state due to the arrival of the first idle symbol, this model will
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also consider subsequent idle symbols expressed by a transition called Receive Next Idle
Symbols. This transition will continue to occur for every other incoming idle until the
first symbol "J" of the starting delimiter arrives. Therefore, the model allows a complete
and continued checking of symbol sequences, which is exactly what the MAC protocol
requires for its correct functionality. This strict control over symbol sequences leaves no
ambiguities regarding the protocol acceptance of symbols. The same reasoning is
followed for other sequences of symbols until a complete PDU has been received.

As Figure 24 illustrates, the PDU for the improved protocol has four types
of formats. Each format adopts the same Starting Frame Sequence (SFS) as FDDI.
Immediately after the SFS there is the Frame Control (FC). By scanning the FC field the
Receiver takes one out of four types of PDU to follow through on its searching.
Similarly, the Receiver state diagram shows four main branches, namely; Frame, Ack,

Subtoken, and Token (as in Figure 24).

a. The MAC Receiver State Diagram and Transition Table

The MAC Receiver State Diagram forms a closed cycle. A hierarchical
decomposition and a history on the sequence of operations is observed in each part as the
receiver performs the checking on the incoming PDU. These operations cover all
conditions that must be met in the receiving process of the protocol.

Figure 25 depicts the complete MAC Receiver State Diagram. The
purpose of this figure is to provide a picture of the MAC receiver diagram. This
complete diagram is formed by a set of smaller diagrams contained inside the rectangles

which are presented in separate figures. There are 10 smaller diagrams in the Receiver
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state machine.

The MAC Receiver state diagram presents the receiving process in five
main modules. The first module is represented by Diagram 1 (Figure 26) which
corresponds to the Receiver scanning Starting Frame Sequence (SFS) and the FC field
of a PDU. After the completion of the FC scanning the Receiver can take four possible
transitions in which it looks for frame, ack, subtoken, and token. These are the other
four modules of the MAC Receiver State Diagram. The Ack module has two diagrams
and the Subtoken and the Token have 1 diagram each.

The Frame module includes Diagrams 2, 2a, 3, 4, and 5. Note that
unlike the specification in the original FDDI standard, which does not cover this level
of diagram specification, in this decomposition into smaller states the Receiver checks
for arrival of different entity frames. A frame which arrives at a station with the
Destination Address (DA) equals to its own Source Address (SA) is a MAC Claim
Frame. In this case, the station has received its own Claim Frame. The path of
transitions goes from Diagram 2 to Diagram 3. The station will copy its own frame into
its receive buffer and sends a signal My_Claim to the transmitter which strips the frame
and begins the process of issuing a token. On the other hand, if a frame arrives with DA
not equal to this station address or DA null then the transition path goes from Diagram
2 to Diagram 4 (DA = 0 or No DA Match). In this case, a further check is done in the
SA field of the frame to verify if this frame is the station’s own Beacon Frame; if it is
then the transition goes to Diagram §, the transmitter will be signalled with My Beacon

and that MAC will attempts to recover the ring. Otherwise, the path goes straight

9




through Diagram 4 and the frame can be either an upstream Source Address Beacon or

a downstream Destination Address LLC, SMT, or MAC frame. This frame will be
repeated downstream on the ring by the transmitter.

Furthermore, if a frame is a LCC or SMT frame which was sent by
another station to this station then the transition path goes from Diagram 2 to Diagram
2a. This frame will be copied and for this protocol the Receiver will send an Ack_Frame
signal to the Transmitter on the opposite ring, which in turn will acknowledge the frame.
In this case, the Receiver sets the appropriate flag to indicate successful copy of the
frame received. The purpose of this brief description of the frame module is to show
how this specification avoids ambiguities and provides a precise control over the
receiving process of a PDU. Different types of frames during different phases of the
receiving process imply different actions which are considered in separate modules. An

example of a complete path of transitions in a frame receiving process is given below.

(1) The Destination Address Station Receives a LLC Frame with

Subtoken
A complete cycle path of transitions for receiving one LLC frame
with subtoken information will be given. The path begins in Diagram 1 goes through
Diagram 2 and 2a, and finally reaches Diagram 1 for another frame. The frame is
assumed to arrive without any format error; is a complete frame (i.e., not a remnant),
and no MAC Reset transition or PH_invalid are expected. The Receiver copies the frame,
checks the validity, and sends the appropriate signal to the Transmitter on the opposite

ring to carry out the acknowledgment process.
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® RO Signal Start R1 Receive Next Idle Symbols R1 Start R2 Receive Next SD Symbol
R2 SFS Received R3 Receive FC Symbols R3 Frame ¥0 Receive DA Symbols FO
DA Match F1 Copy Frame to Local Entity (LLC) F2 Receive_Cp SA Symbols F2
Lower SA F3 Receive_Cp INFO Symbols F3 DA=MA LLC With Sbtk F4
Receive_Cp FCS, ED Symbols ¥4 ED Received_Cp F5 Receive Determine FS
Symbols F5 Valid Frame F7 Frame Copied ¥8 Ack Frame F9 LLC Frame with
DA=MA Received F10 No Error Counted R1

A finite number of transition paths can be established and used in
the chain-reaction arguments process to prove the protocol correctness. In Chapter V a
proof for the previous example is provided.

The other modules, from Diagram 6 to Diagram 9, follow the same
reasoning in the process of receiving a PDU. The acknowledgment, subtoken, and token
modules are simpler than the frame module since these PDUs are of short-fixed length
and carry a unique type of information. Similar paths of transitions to receive these

PDUs can be established.
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Figure 26: Receiver Diagram 1
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Figure 27: Receiver Diagram 2
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Figure 28: Receiver Diagram 2a
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Figure 29: Receiver Diagram 3
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Figure 32: Receiver Diagram 6
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Figure 33: Receiver Diagram 7
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Table 3 is the MAC Receiver Transition Table. The table contains all the
transitions showed in the diagram. Transitions are represented by short words. Same
transitions that occur in different protocol modules are expressed by the combination of
the letter-number of the outgoing state and the letter-number of the entering state.
Transitions in which symbols are being received show the enabling predicate with the
current contents of the PH_indication buffer and the current position of the "symbol”
pointer on the array of symbols of that buffer. All boolean variables when stated solely

by their names on the enabling predicate are assumed to be true unless otherwise

specified.

T_Neg « T_Max;

R(r,0); F(f,0);
A(s,0);
$(0,0); T(0,0);
r=0,1,2,3;
£f=0,2,3,4,5,
11,12,13,
17,18,19,20,
24,25,26;
a=0,1,234,5
,6;

Signal Start PH_Indication(symbol) = { PA/T}] } A (symbol TVX < reset;
R(0,1); = PAJ[LD TVX « enabled;
symbol « 0;

symbol < symbol + 1;
SIGNAL Idle;

Invalid PH_Invalid -
§ R(1,0);

Receive Next | PH_Indication(symbol) = { PA[l)), PA/I..I]} | symbol « symbol + 1;
Idle Symbol A (symbol = PA[L] 3 1<i<max)
R(1-1);
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PH_Indication(symbol) = { PA/[I,..I_.] A
~SDJJ] }

| Transition Enabling Predicate

_____,___i

SIGNAL FO_Error;
Lost Cte Lost Ct + 1;
symbo] <« 0;

| Ra1-2);

PH_Indication(symbol) = { PA[1,..I_], SD/J] }

Idle « off;

SIGNAL Rc_Start;
A,C,E,N_,H,L,
M_Flag « clear;

symbol « symbol + 1;
symbol_ct « 1;

Invalid

R(r,0); F(f,0);
A(a,0);

§(0,0); T(0,0);
r=0,1,2,3;
f=0,2,3,4,
11,12,17,18,1
9,24,25;
2=0,1,2,3,4,5
$6;

PH_Invalid

SIGNAL FO_Error;
Lost Cte Lost Ct + 1;

] Receive Next

PH_Indication(symbol) = { PA[I,..L..], SD{J,K]

symbol < symbol + 1;

SD Symbol } A (symbol = SD,[K])
R(2-2);
Stripon SD | PH_Indication(symbol) = { PA[I,..I_], (SDU A | SIGNAL Idie;
R(2-1); -K]) Vv (SDIJ] A PALL)) } symbol - 0;
symbol < symbol + 1;
symbol_ct « 0;
SFS Received | PH_Indication(symbol) = { Start of Frame
R(2-3); Sequence = PA[I,..I_.], SDIJ,K] }
Receive FC PH_Indication(symbol) = { PA[l,..I_.], symbol « symbol + 1;
Symbols SDIJ,K], FC/n,n] } A (symbol = FC]n] > symbol_ct « symbol_ct +
R(3-3); 1<i<2) 1;
Frame PH_Indication(symbol) = { PA[l,..I_.], SIGNAL PDU_Frame
R3-FO; SD 1K}, FCln,n] } A (FC, = Frame)
Ack PH_Indication(symbol) = { PA[I,..I_.], SIGNAL PDU_Ack
R3-A0; SD[JK], FC[n,n] } A (FC, = Acknowledgment)
Stripon FC | PH_Indication(symbol) = { PA[I,..I_], SDU,K], | SIGNAL Idle;
R(3-1); PAST] } symbol « 0;
symbol + symbol + 1;
symbol_ct « 0;
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f Format Error

PH_Indication(symbol) = { PA[I,..I.],

SIGNAL FO_Error; i
 on FC SD[1,K], ("PAfl] v ~FC/n,nj)} Lost_Ct « Lost_Ct + 1; ‘
R(3-1); symbol « 0;
symbol_ct « 0;
Token PH_Indication(symbol) = { PA[I,..L.], SIGNAL PDU_Tk
R3-TO; SDMJ K], FCIn,n] } A (FC, = Token)
Subtokea PH_Indication(symbol) = { PA[I,..L_.], SIGNAL PDU_SbTk
R3-50; SD(J,K], FC[n,n] } A (FC, = Subtoken)
Receive DA PH_Indication(symbol) = { PA(I,..L_], symbol « symbol + 1;
symbols SDJ,K], FCln,n], DAJ4n Vv 12n] } A (symbol | symbol_ct « symbol_ct +
F(0-0); =DAln]3 15i<12) 1;
A(0-0);
DA Match PH_Indication(symbol) = { PA[l,..I_.], SD[J,K], | A_Flag « set;
FO-R1; FC/[n,n), DAf4n v 12n] } A [(FC,.L = 0) A
(DA, € {SSA})] v
[(FC.L = 1) A (DA, € {SLA}))]
Strip on DA PH_Indication(symbol) = { PA[I,..I_.], SD[J,K], | SIGNAL Idle;
FO-R1; FC/[n,n], PAJL] } symbol « 0;
AO-R1; symbol « symbol + 1;
symbol_ct « 0;
Format Error | PH_Indication(symbol) = { PA[I,..I_.], SIGNAL FO_Error;
on DA SD[J.K], FC/ln,n), (~PAJT] v ~DAJ4n v Lost Ct« Lost Ct + 1;
FO-R1; 12n)) } symbol « 0;
AO-R1; symbol_ct « 0;
DA null orno | (DA, = null) vV (DA, € {SSA}) v (DA, €
DA match {SLA}
F(0-17);
Copy Frame A_Flag Copy_Frame « true;
to Local Entity SIGNAL FR_Strip;
(LLC, SMT,
MAC)
F(1-2);
Set Next A_Flag A (FC, = Next Station Addressing N_Flag « set
Station Frame)
Addressing
Flag
F(1-2);

;




PH_Indication(symbol) = { PA/[I,..I_.],

X Rev-buf(symbol) «
SA Symbols SD[J.K], FC/n,n], DA [4n V 12n], PH_Indication(symbol) ;
F(2-2); SA/4n v 12n] } A Copy Frame A (symbol = symbol « symbol + 1;
A(1-1); SAln)3 15i<12) symbol_ct « symbol_ct +
1;

Higher SA [(FC.L = 0) A (SA, > MSA) A MLA = 0] A | H_Flag « set;

| F(2-3); [(FC,.L = 1) A (SA, = MLA)]
F(17-18);

I A(1-2);

| A@4-5);

| Lower SA [(SA, > 0) A (FC.L,=0) L_Flag « set;

| F(2-3); A (SA, < MSA) A (MLA = 0)]

§ F(17-18); Vv [(FC,.L = 1) A (SA, < MLA)]

| A(1-2);
A(4-5);
My SA [(FC.L, = 0) A (SA, = MSA) D MSA > 0] v | M_Fiag « set;

| F(2-11); [(FC.L, = 1) A (SA, = MLA) 3 MLA > 0]

| Strip on SA PH_Indication(symbol) = { PA[I,..L..], SD[J,K], | SIGNAL Idle;

| F(D-R1; FC/[n,n}, DAJ[4n V 12n], symbol « 0;

{ Al-R1; PAJL] } symbol < symbol + 1;

| £=2,17; symbol_ct « 0;
Format Error | PH_Indication(symbol) = { PA/[l,..I..], SIGNAL FO_Error;
on SA SD[J.,K], FC[n,n], DA [4n V 12n], ("PAJI] v | Lost_Ct < Lost Ct + 1;
F(f)-R1; ~SAf4n v 12n))} symbol < 0;
Al-Rl; symbol_ct « 0;
f=2,17;
Receive_Cp PH_Indication(symbol) = { PA[I,..I_.], Rev-buf(symbol) «
INFO symbols | SD[J,K}, FC[n,n], DAJ4n Vv 12n], PH_Indication(symbol) ;
F(3-3); SAl4n V 12n}, INFO/n,..n_]} A Copy_Frame | symbol « symbol + 1;
F(13-13); A (symbol = INFO,[n] 3 1<i<max) symbol_ct « symbol_ct +

1;

Strip on INFO | PH_Indication(symbol) = { PA[l,..I_,]. SD[J,K], | SIGNAL Idle;
F(f)-R1; FC[n,n], DA[4n V 12n], SA{4n V 12n], symbol « 0O;
f=3,11,18, PAJT] } symbol « symbol + 1;
24; symbol_ct « 0;
Format Error | PH_Indication(symbol) = { PA[I,..I_.], SIGNAL FO_Error;
on INFO SD[J.K], FC[n,n}, DA[4n V 12n], SA[4n V Lost Cte Lost Ct + 1;
F(f)-R1; 12n], (0PAJT] v —~INFO/n,..n_J] } symbol « 0;
f=3,11,18, symbol_ct « 0;
24;
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SIGNAL
LLC or SMT | FC, = SMT Frame with subtoken) A A Flag A | My DA LLC or_
Frame —E_Flag A (L_Flag v H_Flag) SMT_with_Sbitk;
with Sbtk
F(3-4);
DA=MA (FC, = LLC Frame without subtoken Vv SIGNAL
LLC or SMT | FC, = SMT Frame without subtoken) A A_Flag | My _DA_LLC or_
Frame A —E_Flag A (L_Flag v H_Flag) SMT_without_Sbtk;
without Sbtk
F(3-4);
Strip on FCS, | PH_Indication(symbol) = { PA[I,..I_.], SD{J,K], | SIGNAL Idle;
FC/[n,n}, DA [4n V 12n], SA[4n V 12a], symbol « 0;
F(f)-R1; INFO/[n,..n,], PAlL] } symbol « symbol + 1;
f=4,12,19, symbol_ct « 0;
25;
Format Error | PH_Indication(symbol) = { PA[,..I_.), SIGNAL FO_Errur;
on FCS, ED SD1,K], FCfn,n], DA{4n V 12n], SA[4n V Lost_Cte« Lost Ct + 1;
F(f)-R1; 12a), INFO/[n,..n_.], (mPAJI] vV —~FCS/[8n] Vv | symbol « O;
f=4,12,19, -EDJT)) } symbol_ct « 0;
25;
ED Rev-buf(symbol), PH_Indication(symbol) = { Frame_Cte-Frame_Ct
Received _ PASL..L_], SD[JK], FCinn], DAJ4c Vv 12n], | + 1;
Cp SA[4n Vv 12n], INFO/[n,..n_.}), FCS[8n],
F(4-5); ED[T] }
F(12-13);
Receive PH_Indication(symbol) = { PA{I,..I], Rev-buf(symbol) «
Determine FS | SD[J,K], FCja,n], DA [4a Vv 12n], PH_Indicstion(symbol);
Symbols SAl4n Vv 12n), INFO[n,..n_.], FCS[8n], symbol « symbol + 1;
F(5-5); ED/[T), FS.E/S/R], FS.A[S/R], FS.C[S/R] } A 5 1_ct « symbol_ct +
Copy_Frame A (symbol = (FS.E[S/R] A 1;
FS.A[S/R] A FS.CIS/R])
Invalid PH_Invalid SIGNAL FR_Received;
F(5-6); Copy_Frame « false;
F(13-14); Fr_Strip «- off;
F(20-21);
F(26-27);
Valid Frame [(FS.E, = R) A (Valid Data Length)] V TVX « Reset;
F(5-7); [(Valid FCS,) A (FC,.FF = Implementor)] E_Flag « clear;
F(13-15); Valid_ Frame « true;
£(20-22);
F(26-28);

1 :




[(FC, = Void) A (FS.E, = R) A

Void E_Flag « set;

F(5-7); —{(Valid Data Leagth) v (Valid FCS))] A_,M_H_,L_NFlag
F(13-15); < clear;

F(20-22); Valid_Frame « false;
F(26-28);

Invalid Frame | {(FS.E, # R) vV —(Valid Data Length)] v E_Flag « set;

F(5-7); —[(Valid FCS,) v (FC,.FF = Implementor)] A ,M_H_,L_,N Flag
F(13-15); < clear;

F(20-22); Valid_Frame « false;
F(26-28);

Strip on FS PH_Indication(symbol) = { PA[1,..I_.], SDIJ,K], | SIGNAL Idle;

F(f)-R1; FC/jn,n], DA[4n V 12n], SAf4n V 12n], symbol « 0;
f=5,13,20, INFO[n,..n_J, FCS[8n], ED,(T), PA/l] } symbol « gsymbol + 1;
26; symbol_ct « 0;

Format Error PH_Indication(symbol) = { PA[1,..I_.], SIGNAL FO_Error;

on FS SD,[J, K], FCn,n], DA{4n V 12n], SA[4n V Lost_Ct «- Lost_ Ct + 1;
F(f)-R1; 12a], INFO/n,..n__], FCS{8n], ED[T] (- PAJl] | symbol « O;

f=5,13,20, VvV (FS.E/S/R], vV FS.A[SR], v FS.C[S/R])) | symbol_ct < O;

26; )

Error Counted | (E_Flag) A (E, # S) Error_Ct « Error_Ct
F(f,)-RO; +1;

F(f)-R1;

fi=6,14,21,

27;

f,=10,16,23,2
9;

No Error
Counted
F(f,)-RO;
F(f)-R1;
f,=6,14,21,
27;
f,=10,16,23,2
9;

—(E_Flag) v (E, = §)

Frame Copied
F(7-8);

Valid_Frame A Copy_Frame

C_Flag + Set;

Frame Not
Copied
F(7-8);

Valid_Frame = false Vv
Copy_Frame = false

C_Flag < clear;
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Ack Frame
F(8-9);

FS.A, = R A C_Flag

N_Flag « clear; SIGNAL
Ack_Frame;

No Ack Frame
F(8-9);

FS.A, # R A N_Flag v —(C_Flag)

Ack_Frame « off;

Suspected DA | (FS.A, = S) A (A_Flag) A (DA,IG =0) A Notify SMT(suspected
Received -y(E_Flag) A (FC,.FF = 0) DA_received)
F(8-9);
LLC or SMT | PH_Indication(symbol) = { PA[I,..I_.), R_Flag « clear;
Frame with SD[J,K], FC]n,n], DA [4n V 12n], SIGNAL FR_Received;
DA=MA SA[4n Vv 12n], INFO/[n,..n__], FCS[8n], Copy _ Frame « false;
Received ED[T], FS.E[S/R], FS.A[S/R], FS.C[S/R] } A | Fr_Strip « off;
F(9-10); (FC, = L1.C Frame V FC, = SMT Frame) A
—(E_Flag) A A_Flag
My Void (FC, = Void) A (A_Flag) A (M_Flag) TVX « reset;
F(11-12); SIGNAL My_Void;
F(24-25);
My MAC (FC, = Claim) A ( _Flag) A Flag) SIGNAL My_Claim;
Claim (T_Msx < T Bid Rc < T_Min) A (T_Bid T_Neg « T_Bid_Rc;
Token Bid = T_Req)
F(11-12);
Receive_Cp PH_Indication(symbol) = { PA[L,..I_.), Rev-buf(symbol) «
FCS, ED SD(J,K], FCJn,n), DA 4n VvV 12n), PH_Indication(symbol);
Symbols SA[4n V 121}, INFO/[n,..n_.], FCS/8n], ED/T] | symbol « symbol + 1;
F(12-12); } A Copy_Frame A (symbol = FCS[n] > symbol_ct « symbol_ct +
1<i<8) 1;
Receive_Cp PH_Indication(symbol) = { PA[l,..I_.]), Rev-buf(symbol) «
FS Symbols SDJJ,K), FCln,n], DAJ4n V 12n), PH_Indication(symbol);
F(13-13); SA[4n V 12n], INFO/[n,..n_), FCS[8a], symbol - symbol + 1;
ED[T), FS.E[S/R], FS.A[S/R], FS.C[S/R] } A symbol_ct < symbol_ct +
Copy_Frame A (symbol = (FS.E,[S/R] A 1;
FS.A[S/R] A FS.CIS/RD)
My MAC PH_Indication(symbol) = { PA[l,..I_.), T_Neg « T_Bid_Rc;
Claim SDJ.K], FC[n,n], DAf4n V 12n), SIGNAL FR Recuved
Received SA[4n Vv 12n], INFO,[n,..n_.], FCS[8n], Copy _ Frame « false;
F(15-16); ED[T), FS.E[S/R], FS.A[S/R], FS.C[S/R] } A | Fr_Strip « off;
('Valid Frame) A (My Claim) My_Claim « off;
Receive SA PH_Indication(symbol) = { PA[1,..I_.]. symbol < symbol + 1;
Symbols SD[J.K], FC[n,n], DA[4n ¥ 12n), symbol_ct « symbol_ct +
F(17-17); SAf4n Vv 12n]} A (symbol = SA[n]» 1;
A(4-4); 1<ig12
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My SA F(17-
24);

[(FC.L, = 0) A (SA, = MSA) D MSA > 0] v
((FC.L, = 1) A (SA, = MLA) 3 MLA > 0]

Transition Enabling Predicate Action |

SIGNAL Fr_Strip;
M_Flag « set;

Receive INFO

PH_Indication(symbol) = { PA[l,..I_.],

symbol « symbol + 1;

symbols SDJJ,K], FC[n,n], DA 40 Vv 12n], symbol_ct « symbol_ct +
| F(18-18); SAf4n v 12n), INFO/n,..n_J] } 1;
F(24-24);
Higher MAC (FC, = Claim) A (H_Flag) A SIGNAL Higher Claim;
| Claim (T_Max < T_Bid Rc £ T_Min) A (T_Bid_Rc T_Neg « T_Bid_Rc;

Tk Bid > T _Req)
F(18-19);
Upstream (FC, = Beacon) A —(M_Flag) SIGNAL Other_Beacon;
MAC Beacon T_Neg « T_Max;
F(18-19);
Lower MAC (FC, = Claim) A SIGNAL Lower_Claim;
Claim -[(H_Flag) v (M_Flag)] A T_Neg < T_Bid_Rc;
Tk Bid {[(MSA ensbled) 3 (MSA > 0)] v
F(18-19); [(MLA enabled) 3 (MLA > 0)]} A

(T_Max < T_Bid_Rc s T_Min) A (T_Bid_Rc

< T_Req)
Other DA (FC, = LLC Frame VvV FC, = SMT Frame) A SIGNAL ’
LLC or SMT —(E_Flag) A (L_Flag v H_Flag) Other_LLC or_SMT;
Frame F(18-
19);
ED Received PH_Indication(symbol) = {PA[l,..L_], SD[J,K], | Frame_Ct-Frame Ct
F(19-20); FCJln,n}, DA[4n VvV 12a], SA[4n V 12n], +1;
F(25-26); INFO/[n,..n_.), FCS [8n], ED [T]}
Receive FS PH_Indication(symbol) = { PA[I,..I_]. symbol « symbol + 1;
Symbols SDJ,K), FC[n,n], DAl4n v 12n], symbol_ct « symbol_ct +
F(20-20); SA4n v 12a], INFO/[n,..n_.], FCS[8n], 1;
F(20-26); ED[T), FS.E/[S/R], FS.AJS/R], FS.C[S/R] } A

(symbol = (FS.E,[S/R] A FS.A[S/R] A

FS.CIS/R])
Other DA PH_Indication(symbol) = { PA[l,..L.], SIGNAL FR_Received;
LLC or SMT | SDJJ,K]}, FCfn,n}, DAf4n V 12n}, Other LLC or_SMT «
Frame SAl4n v 12z}, INFO[n,..n_.}), FCS[8n], off;
Received ED,[T], FS.E,[S/R], FS.A[S/R], FS.C[S/R] } A
F(22-23); (Valid_Frame) A (Other_LLC or_SMT)




| Higher MAC

Enabling Predicate

PH_Indication(symbol) = { PA[I,..I.],

SIGNAL FR_Received;
Claim SD,[J K], FCfn,n], DA[4n V 12n], Higher_Claim « off;
Received SAf4n Vv 12n], INFOn,..n_.], FCS[8n],
F(22-23); ED[T], FS.E[S/R), FS.A[S/R], FS.C,[S/R] } A
(Valid_Frame) A (Higher_Claim)
Lower MAC PH_Indication(symbol) = { PA[I,..I_.], SIGNAL FR_Received;
Claim SD[J,K], FC[n,n}, DA J4n V 12n], Lower_Claim « off;
Received SA[4n V 12n], INFO/[n,..n_,], FCS[8n],
§ F(22-23); ED[T], FS.E[S/R], FS.AIS/R], FS.C,[S/R] } A
(Valid_Frame) A (Lower_Claim)
| Upstream PH_Indication(symbol) = { PA/[l,..I], SIGNAL FR_Received;
i MAC Beacon | SD[J,K], FC/[n,n], DA [4n V 12n], Other_Beacon « off;
Received SA[4n V 12n], INFO[n,..n_]), FCS[8n],
F(22-23); ED[T], FS.E[S/R], FS.A[S/R], FS.C[S/R]} } A
(Valid Frame) A (Other_Beacon)
My Beacon (FC, = Beacon) A (M_Flag) SIGNAL My_Beacon;
F(24-25); T_Neg « T_Max;
My MAC PH_Indication(symbol) = { PA[I,..I .1, SIGNAL FR_Received; i
Beacon SD,[J,K], FC[n,n], DAf4n Vv 12n], My_Beacon « off;
Received SA[4n V 12n], INFO[n,..n_], FCS{8n], 1
F(28-29); ED[T], FS.E[S/R], FS.A[S/R], FS.C,[S/R] } A i
(Valid_Frame) A (My_Beacon) ;
DA Match PH_Indication(symbol) = { PA[],..I.]), SD[J,K], | A_Flag « set;
AO-R1; FCJn,n], DAl4n V 120] } A [(FC,L = 0) A Copy_sack < true;
(DA, € {SSA))] V SIGNAL FR_Strip;
(FC.L = 1) A (DA, € {SLA})]
Receive_Cp PH_Indication(symbol) = { PA{I,..I_.], Rcv-buf(symbol) «
ED Symbol SD[],K], FC|n,n}, DA [4n V 12n], PH_Indication(symbol);
A(2-2); SAl4n v 12a}, ED/T] } A Copy_Frame A symbol < symbol + 1;
(symbol = ED[T]) symbol_ct « symbol_ct +
1
Strip on ED PH_Indication(symbol) = { PA[I,..I.], SD[J,K], | SIGNAL Idle;
A(2-1); FC/[n,n], DA[4n V 12n), SAf4n V 12n], symbol « 0;
A(5-1); PA[L) } symbol « symbol + 1;
symbol_ct = 0;
Format Error PH_Indication(symbol) = { PA[I,..I_.], SIGNAL FO_Error;
on ED SD,J.X], FC[n,n], DA[4n V 12n], SAf4n Vv Lost Ct« Lost Ct + 1;
A@2-1); 120}, ("PAJl]] v ~EDJT]) } symbol « 0;
A(5-1); symbol_ct « 0;
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Rev-buf(symbol), PH_Indication(symbol) = {

Ack Ct« Ack Ct + 1; |
Received _ PA[(IL..L ], SD(].K], FC[n,n], DA [4n Vv 12a], |
Cp SA[4n V 12n], ED[T] }
A(2-3);
Receive_Cp Rev-buf(symbol), PH_Indication(symbol) = { Rcv-buf(symbol) «
FS Symbols PA[,..L.]), SDJ,K], FC[n,n], DA/[4n V 12n], | PH_Indication(symbol);
A(3-3); SAl4n Vv 12n), ED[T], FS.E/[S/R], FS.A[S/R], symbol « symbol + 1;
FS.C[S/R] } A Copy_Ack A (symbol = symbol_ct « symbol ct +
(FS.E[S/R] A FS.A[S/R] A FS.C[S/R]))) 1;
My LLC or PH_Indication(symbol) = { PA/l,..I..], SIGNAL Ack_Received; “
SMT Frame SD,[J, K], FC[n,n), DAJ4n V 12n], Copy_Ack « false;
Ack Received | SAJ4n V 12n), EDJT], FS.E[S/R], FS.A[S/R], | FR_Strip « off;
A(3-1); FS.C{S/R]} A
(FC, = LLC Frame_Ack V
FC, = SMT ] “Frame ack) A M_Flag
Strip on FS PH_Indication(symbol) = { PA/[I,..I_.], SD[J,K], | SIGNAL Idle;
A(a)-R1; FC[n,n}, DA{4n V 12n], SA [4n V 12n], symbo] « 0;
a=3,6; ED[T), PAJL] } symbol « symbol + 1;
symbol_ct « 0;
Format Error | PH_Indication(symbol) = { PA[l,..I.], SIGNAL FO_Error;
on FS SD,[J,K], FC|n,n], DA[4n Vv 12n], SA[4n V Lost Ct< Lost Ct + 1;
A(a)-R1; 12n), ED[T] (—PAJT] vV ~(FS.E[S/R], V symbol « 0;
a=3,6; FS.A[S/R], v FS.C{S/R])) } symbol_ct « 0;
no DA match | (DA, = null) v (DA, € {SSA}) v (DA, € I
A(04); {SLA}
Receive ED PH_Indication(symbol) = { PA[I,..I_.], symbol « symbol + 1;
Symbol SD[J,K], FC[n,n], DA[4n V 12n], symbol_ct « symbol_ct +
A(5-5); SAl4n Vv 12n], EDJT] } A (symbol = ED,[T)) 1;
ED Received PH_Indication(symbol) = { PA[I,..I_.], Ack_Ct « Ack Ct+1;
A(5-6); SD,[J,K], FC/n,n], DAl4n V 12n], SA[4n V
120}, EDJT] }
Receive FS PH_Indication(symbol) = { PA[I,..L.], symbol « symbol + 1;
Symbols SD[J.K], FC[n,n], DA [4n Vv 12n], symbol_ct < symbol_ct +
A(6-6); SAl4n v 12n), ED[T], FS.E/S/R], FS.A[S/R], 1;

FS.C[S/R]} A Copy Ack A (symbol =
(FS.E[S/R] A FS.A[S/R] A FS.C[S/R]))
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| Other LLC or
§ SMT Frame

i Ack Received
| AG-1);

PH_Indication(symbol) = { PA[{l,..L.],

SD 1)K}, FC/[n,n], DAJ4n Vv 12n],

SA[4n Vv 12n], ED[T], FS.E[S/R], FS.A[S/R],
FS.C[S/R] } A

(FC, = LLC Frame Ack V

FC, = SMT_Frame_ack) A —(M_Flag)

1' Receive Sbtk
| Symbols
! S(0-0);

PH_Indication(symbol) = { PA[I,..L], SD,[J.K],
FC[CLFF,ZZZZ), SLf4n v 12n], EL [4n or
12n], CLASS/2n],

EDJT,T] } A (symbol = SL[n]> 1<i<12)

symbol « symbol + 1;
symbol_ct « symbol_ct +
L

PH_Indication(symbol) = { PA[L,..I], SD[J,K],
FCln.n), PAJT]} V

( PAr[Il"l-x]’ SD[J’KL FC:[“»“L

SL[4n V 12n], PAJTJ } Vv

{ PAfL..1 ), SDIJ.K]), FC|n,n],

SL[4n v 12n], EL[4n or 12n], PAJT] } V

{ PA/lL,..L], SDUJ,K], FC[n,n],

SL[4n V 12n}, EL [4n or 12n], CLASS,[2n],
PAJ1] )

SIGNAL Idle;

symbol « 0;

symbol « symbol + 1;
symbol_ct « 0;

PH_Indication(symbol) = { PAI,..I_], SD[J,K],
FClo,n], ("PAJT] vV ~SLf4n vV 12n])} V

( PA,[I,.-I_], SD[J,K], FC.[n,n],

SL[4n V 12n), (mPAJI] v ~EL[4n Vv 12n)) }
v

{ PAI,..I), SDUJ.K], FCn,n],

SLf4n V 12n), EL{4n or 12a), (~PAJI,] V
~CLASS.[2n]) } V

{ PALL,..I], SDJ,K], FC[n,n],

SL{4n V 12n), EL[4n or 12n], CLASS[2a],

SL, < MA < EL,

SIGNAL FO_Error;
Lost_Ct « Lost Ct + 1;

symbol « 0;
symbol_ct « 0;

Write SbTk_Class;

(MA < SL) v (MA > EL) Vv (SL, < EL)

SbTk_Flag « Reset;
TVX « Reset;

Subtoken
Received
S1-R1;

PH_Indication(symbol) = { PA[l,..L], SD,J.K],
FCCLFF,222Z), SL{4n V 12a}, EL {4n or
12n], CLASS [2a],

ED][T,T] }

SIGNAL
SbTk_Received;

102




PH_Indication(symbol) = { PAI,..L], SD,{J,K],
FC{CLFF,ZZZZ], EDJT,T] } A (symbol =
ED[T,))

symbol « symbol + 1;
symbol_ct « symbol_ct +
K

PH_Indication(symbol) = { PA,[],..I...], SD[J,K],
Fcf(ntn]’ PAIIII )

SIGNAL Idle;

symbol « 0;

symbol « symbol + 1;
symbol_ct « 0;

PH_Indication(symbol) = { PA[l,..L..], SD[J,K],
FCln,n], ("PA[l] v
—ED/T,T)) }

PH_Indication(symbol) = { PA[I,..L..],
SDJ,K], FC{n.n], EDJT,T] } A
(FC.C, = Nonrestricted)

SIGNAL FO_Error;
Lost_Ct « Lost_Ct + 1; ;
symbol « 0; %

symbol_ct « 0;
R_Flag « Clear;
TVX « Reset;

PH_Indication(symbol) = { PA[I,..I],
SD[J,K], FC,n,n], ED{T,T] } A
(FC.C, = Restricted)

R_Flag « Set;

PH_Indication(symbol) = { PA,[I,..L], SD,[J,K],

FC/[n,n], ED[T,T] }

SIGNAL Tk_Received;
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S. Mac Transmitter Operation and Specification

The Mac transmitter repeats symbols from other stations over the ring after
a station delay, and transmits its own symbols which come from the appropriate buffers.
The transmitter operates on the input symbol stream from PHY (PH_indication) and
produces the output symbol stream to PHY (PH_request). Its operation is synchronized
by signals from the Receiver. The Transmitter repeats, removes, and inserts a PDU into
the ring during different phases of protocol operation. It is responsible for capturing of
a token or subtoken, carrying out the timed token operations, transmitting data and
issuing a new token. The transmitter is also responsible for transmission of MAC
supervisory frames in the recovery and beacon processes.

In this protocol, the MAC of the token holding station controls the transmission of
new frames and token on the dual ring by using a Wait ,,,,,, and Wait,_,,,,,, variable
set by each transmitter on the appropriate ring. When a transmitter is active (i.e.,
transmitting its data) the Wait variable on that ring is set to true. Upon completion of

frame transmission this variable is set to false.

a. The MAC Transmitter State Diagram and Transition Table
Figure 36 depicts the overall view of the MAC Transmitter State
Diagram. It shows 11 smaller diagrams which are presented as separate figures. The Idle
state is shown in Diagram 1 (central rectangle in Figure 36). The Idle state is the initial
state and indicates the normal condition of the medium. The transition Tx Idle Symbols
corresponds to the transmission of PDU Preambles (PA). Several examples on the

transmitter protocol operation are given in this subsection.
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(1) The DA Station Removes a Frame Being Received - no subtoken
issued
A path of transitions for a frame without subtoken received with
a DA match is shown. The frame is removed from the ring and no subtoken is issued.
The path begins in Diagram 1, goes through Diagrams 2 and 3, and returns to Diagram
1.

® 10 Tx Idle Symbols 10 Start PO Tx Next SD Symbol PO SFS Transmitted P1 Frame
FO DA Match: Frame Without Subtoken Strip Frame 10 Tx Idle Symbols 10

(2) The DA Station Receives a Frame With Subtoken and Uses the
Subtoken
The frame with subtoken is received with a DA match and the
station uses the subtoken to transmit one synchronous or asynchronous frame.
® 10 Tx Idle Symbols 10 Start PO Tx Next SD Symbol PO SFS Transmitted P1 Frame
FO DA Match: Frame With Subtoken F1 Usable Subtoken 10 Tx Idle Symbols 10

Usable Subtoken Received S2 Tx Syn/Asy Frame Symbols S2 End Syn/Asy S3
Station Holding Sbtk Tx Completed 10 Tx Idle Symbols 10

(3) A Station Repeats the Frame Downstream on the Ring
A complete path of transitions for the repeat frame protocol
operation. This process is accomplished when there is no DA or SA match. The frame

is assumed to be repeated with no error detected.
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® 10 Tx Idle Symbols 10 Start PO Tx Next SD Symbol PO SFS Transmitted P1 Frame
FO DA=0 or No DA Maich F2 No SA Match: Pass Frame F3 Repeat
FC,DA,SA,INFO,FCS,ED Symbols ¥3 ED Transmitted F4 Reset E F5 Tx FS
Symbols F5 Frame Repeated 10 Tx Idle Symbols 10

(4) Reliability Maintained When Configuration Changes (THRU to
WRAP)

Assume that (1) the network configuration changes to the "Wrap
mode" (one logical ring) due to a serious ring failure, and (2) the frame is received with
a SA Match. The frame is removed from the ring by the SA address station as in the
original FDDI protocol. The improved protocol reverts to the basic FDDI operation.

® 10 Tx Idle Symbols 10 Start PO Tx Next SD Symbol PO SFS Transmitted P1 Frame

FO No DA Match: Wrap Mode F2 SA Match: Wrap Mode, Strip Frame 10 Tx Idle
Symbols 10

(5) A Station Captures a Token, Performs Simultaneous Transmission,
and Issues a new Token.
A complete path of transitions is given for (1) capturing of a token,
(2) simultaneous transmission of one synchronous frame on both rings, and (3) after
transmission of both frames the token is issued. The frame on the primary ring goes with
the subtoken information.
® (1) 10 Tx Idle Symbols 10 Start PO Tx Next SD Symbol PO SFS Transmitted P1

Token TO Ring Opr and Token Early T1 Nonrestricted T2 Usable Token T3
Capture Token 10 Tx Idle Symbois 10 (2)
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Ix Syn Frame Symbols,...,, EO (a)

(2) 10 Usable Token Received EO
N
Tx Syn Frame Symbols,,.pa., EO (b)

(a) EO Syn Frame With Sbtk Info Issued E1 Station Holding Tk Tx Primary Ring
Completed E9 Ring Opr EI0 Nonrestricted El1 Wait Other Ring Ell
............................................ (3)Issue Token EI12 Tx Token Symbols E12
token issued 10 Tx Idle Symbols 10

() USSP EQSyn Frame Without Sbtk Issued El Station
Holding Tk Tx Secondary Ring Completed 10 Tx Idle Symbols 10
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Figure 36: MAC Transmitter State Diagram
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MAC TRANSMITTER STATE D1 AGRAM
Diag. 1
[ SEE DIAG. 2) Aeset Tx Idle
Symbo s
< 10 \t_]
<& J ™~ - »
< \ F
Start 10LE > 6 s
Usabie Subtoken
Rece!ved
Usabie Token
Recelved
Tx Syn/Asy Frame
Symbo |s
Reset Recovery
y J' Ena Syn/Asy
cHECK TR CLAIM
AESEY ENTRY
Station Holding SoTk
Tx Completed
T4
ﬁ\ Token Late
™ COHECK TK o
IOLE TENE: -
(SEE DIAG. 7)
Token Early
7 o Tx Syn Frame Symbois
|Reset lMOvory ( ™
OATA :
v —
(o2 - T CLaiM Syn Frame Syn Frame
et ENTRY Another
Syn Frame with SoTk without SbTk
tnfo issued info Issued Station Holding

Tk Tx Primary
Ring Completed

»
>

Station Hoiding Tk
Tx Secondary Ring
"Conolotod

™
1L

——7/;1\‘——
{ oecx
NORE
™

Service

Wait Other Ring

Norfrestr icted

(SEE DIAG. 5D

CSEE DIAG. B)

Restr icted

CSEE DIAG.

3

—> (SEE DIAGs.

10.

11

Figure 37: Transmitter Diagram 1
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MAC TRANSMITTER STATE D1 AGRAM
Diag. 2
From 10 TX 1DLE
(SEE DIAG. 1
From 10 TX IDLE
Reset
]
CHECK
\e=/
Raset Reset st
MAC MAC Frame art
Requested Rece ived
.
™ ™
IOLE I10LE
Tx Next SD Symbol
SFS Transmitted
Frame Token
[SEE DIAG. 3) TYPE CSEE DIAG. 4)
Subtoken
S0
CHECK
S8TC
v No DA match usabie Unusab le
~ Pass Ack Subtot-en Subtoken
10LE
Repeat SubTk

Repeat Ack
\¢—J Symbois

Recovery

\ \
CHECK T CoAtM CHECK T CLAIM
RESET oLe eNTRY RESET ™ eNTRY

p~ Capture 1oue
e Usable Remove Subtaken
J Suwotoken  |Unusabie SbTk Repeetecd
y v v
™ ™ ™
1OLE ILE 1OLE

Symbo s

Recovery

N

A

Figure 38: Transmitter Diagram 2
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MAC TRANSMITTER STATE

Diag. 3

D1AGRAM

DA Match: DA Match:
Frame witnh Frame without
ame w Subtoken

Subtoken Strip Frame

™® IRE

Unusabie SbTk
he— Tx SbTk Symbolis

wap Mode

CSEE DIAG. 2)

voia

™
1LE

Match

SA mMatch SA Match-
SoTk wrep Mode Strip My No SA Match
Reset Issued Strip Frame Beacon Pass Frame
v v
v ™ 1OLE
CHECK TE CLAIM ™ ™ Repeat FC, DA, SA,
RESET  enTAY YOLE e \e—JINFO, FCS, ED Symbois
Reset
Recovery
- ED JL
:’::7 e Transmitted . ...
exrar
Set Reset E
3 Tx FS Symbols
™
£s
Reset |Strip Recovery
- Frame v
oHECK ™ T™® CLAIM
"OLE Repeateda
™ 1ne

Figure 39: Transmitter Diagram 3
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MAC TRANSMITTER STATE DIAGRAM

Diag. 4

(SEE OIAG 2O

Token

Ring
not

Norrestricted Restricted

Usabie Unugabie
Token Token

Capture
Token
I A A
™ crgcK
¥ NESET . 43 ENTRY
™
(OLE

Figure 40: Transmitter Diagram 4
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Norrestricted | Restricted

Station Holding
Tk Tx Primary
Ring Completed

Tx Token Symbols

1S8SUE
TOKEN
Reset Recovery
v Token \ 4
CHECK |ssued TX CLAIM
RESET ENTRY

™

MAC TRANSMITTER STATE D1 AGRAM
Diag. 5
(SEE DIAG 19
Nonrestricted Restricted
¥ €3
{ ™ Tx_Asy Frame Symbols
Reset [Recovery _——A\ DATA
y_ < F Asy Frame
CrECK e CLam Another Asy Frame Sy a
RESET ENTRY ASy with SbTk without SbTk
Frame Info Issued Info Issued
€4
[ crece
MORE wait Othe:
Ix Ring

Station HoldIng
Tk Tx Secondary

Ring Comptleted
v

™
IOLE

Figure 41: Transmitter Diagram 5
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MAC TRANSMITTER STATE DIAGRAM

Diag. b

(SEE DIAG. 1
Station Holding
Tk Tx Primary
Ring Compieted

Ring
Not

Recovery
y

T CLAIM
ENTRY

v
CHECX Issued

R
#
L

Figure 42:Transmitter Diagram 6
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MAC TRANSMITTER STATE

Diag. 7

(SEE DIAG. 13

Token Late

Tx_Syn Frame

Symbols
Reset |Recovery

v
e TE CLAtw Another Syn Frame Syn Frame
RESET ENTRY Syn with SbTk without SbTk
Frame Iinfo Issued Info Issued
L1
CHECK
MORE wWait Other
Ix Ring
Station Holding

Tk Tx Primary
Ring Completed

v

™
I1OLE

RIng
Not

Nonrestr icted | Restr icted

wait Other Ring

]
TOKEN

Reseot Recovery
-y _ Token _JL
CHECK Issued TE CLAIM
RESET

ENTRY

LS
(325:1." Token Symbols
™

10LE.

D1 AGRAM

Station Holding
Tk Tx Secondary
Ring Compietea

Figure 43: Transmitter Diagram 7
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MAC TRANSMITTER STATE DIAGRAM

Diag. B

(SEE DIAG. 1D

From 10 TX IDLE

Transmit
immediate

PR Tx tmmediate
) Symbols
Reset Recovery
v v Another End Tx
CHECK TK CLAIM immediate Immediate

RESET ENTRY Frame

Tx Immediate
Comp | eted

Figure 44: Transmitter Diagram 8
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MAC TRANSMITTER STATE DIAGRAM

Diag. S

CSEE DIAG. 1)

From {0 TX IDLE

Generate Ack

Tx, SD, FC, DA, SA,
ED, Symbols

™
AcK
Reset Recovery
v_ ED
creck Transmitted T CLAIM
RESET ENTRY
G1
cHECK
FS.E
Set E Reset E

FS Symbols

Recovery

v _ v
CHECK Issued TK CLAIM
RESET ENTRY

™ I0LE

Figure 45: Transmitter Diagram 9
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MAC TRANSMITTER STATE DIAGRAM

Diag. 10

(SEE DIAG. 1D

From 10 TX IDLE

Recovery

e JTx Claim Frame Symbols

Failed

Successful
Clatm

Ring
Not
Opr

Norrestricted | Restricted

¢ ] Tx Token Symbols

TOKEN

Reset Recovery
Y _ Token  _ V¥ __
;‘g Issued 7: :T:'V
IKS
Figure 46: Transmitter Diagram 10
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TOKEN

MAC TRANSMITTER STATE DI AGRAM
Diag. 11
From {0 TX IDLE
(SEE DIAG. 1)
From 10 TX IDLE
Unusab le Beacon
Token Requested
Received

Tx Beacon
Frame Symbois

Ring Fixed
Not
Opr Yy
CHECX TK CLAIM
RESET ENTAY

Norrestr icted

Restricted

Recovery
issued
v \ 4
CHECK TK CLAIM
RESET rx ENTRY
IOLE

Figure 47: Transmitter Diagram 11
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Table 4 is The MAC Transmitter Transition Table. Transmitting symbols
transitions show the enabling predicate with the current contents of the PH_request buffer

and the current position of the “symbol" pointer on the array of symbols of this buffer.

PH.request[symbol] «
LI}

symbol « I;;

8 1 « symbol + 1;

T_Opr « T_Max;
SM_MA_CONTROL.request(send mac_frame) vV TRT « T_Opr;
x=]0,P0,F1,F3, | {MAC Frame A Token_Class < none;
F5,A1,51,T3,52 | [Ring_Operational v Idle « clear;
,EO0,E3,E8,E12, Late Ct =0 Vv

Lo,Ls,L1,L5. M (Token_Class » none A —My_Claim)]}

0,G0,G4,C2,C5

,17,B0;

Reset MAC MAC_Reset Late Ct « clear;

requested Ring_Operational « clear;

RO-10;

Reset MAC Ring_Operational vV Late Ct = 0 T_Neg « T_Max;

frame received Tx_Idle « set;

RO-I0;

Start Rc_Start A PH_Indication(symbol) = Idle «- clear;

10-PO; { PALL,..I_], SDUJ] } A (symbol = SDJ]) PH_Request(symbol) «-
PH_Indication(symbol);
symbol < symbol + 1;

Tx Next SD PH_Indication(symbol) = { PA[l,..I_.], SD{J, K]} A Tx_Idle « clear;

(symbol = SD[K]) PH_Request(symbol) <
PH_Indication(symbol);
symbol « symbol + 1;
Idle v FR_Strip v FO_Error Tx_ldle « set;

x=P0,F3,F5,Al

»S1,T3;

SFS PH_Request(symbol) = { PA/[I,..L.], SD,[J.K] } A

Transmitted (symbol = SD,[K})

P(0-1);
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(A_Flag) A (FC[n,n] = LLC or SMT frame with
subtoken) A —(Wrap)

| Unusable Sbtk,
Tx Sbtk

Symbols

i F(1-1);

Sbik-buf(symbol) = { PA,[I..In.], SD,[J,K], FC,[n,n],
SL,[4n or 12n], EL [4n or 12n], CLASS,[2n],
ED,(T,,T,] } v —(Usable_Sbtk) A (symbol =
PALD);

PH.request[symbol] «

Subk-buf(symbol);

symbol « symbol + 1

Recovery TVX expired vV
x-C0; [TRT expires A Late Ct > 0] A
x=F1,F3,F5,A | Lower_Claim
1,81,7T3,582,E0,
E3,E8,E12,10,
L5,L1,L5,M0,G
0,G4,C2,C5,T7
Usable Subtoken | Usable_Sbtk Tx_Idle « set;
F1-I0;
Sbik Issued PH_Request(symbol) = { PA[1,..I_], SD,[J,K],
F1-I0; FC,[n,n), SL [4n or 12n], EL [4n or 12n], CLASS,[2n],
ED,[T,,T,] } A (symbol = ED,[T;])
Da Match: (A_Flag) A (FC]n,n] = LLC or SMT frame without Tx_ldle « set;
Frame without subtoken) A —(Wrap)
Subtoken,
Strip Frame
FO-10;
Da Match: (A_Flag) A (Wrap)
Wrap mode
F(0-1);
Da = 0Qor (DAJ40 V 120] = mull) A —(A_Flag)
No DA Match
F(0-2);
Void FCJn,n) = Void Tx_Idle « set;
FO-10;
SA Match: (DAJl4n V 120] = null) A (M_Flag) v Tx_Idle « set;
Strip My MAC | (FC/[n,n] = Beacon Frame)
Beacon
F2-10;
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No SA Match:
Pass Frame
| F2-3);

Repeat FC, DA,

SA, INFO,
FCS, ED
Symbols
F(3-3);

PH_Indication = { PA[l,..L.], SD[J.K], FC/[n,n]},
DA[[4n V 12n], SAJ4n V 12n], INFO/[n,..n.],
FCS[{8n], ED[T]} A

(symbol = FCn,n])

PH_Request(symbol) «
PH_Indication(symbol);
symbol < symbol + 1;

PH_Request = { PA[I,..L_), SD,[J.K], FC,[n,n],
DA[4n V 12n), SA [4n V 12a], INFO,[n,..n_],
FCS,[8n], ED,[T] } A

(symbol = ED,[T])

PH_Indication(symbol) = { PA(I,..I_], SD,J,KI,
FCln,n), DAf4a V 12n], SAf4n Vv 12n),
INFO/[n,..n_), FCS[8n], ED[T], FS.E{S/R] } V
(symbol = FS.E[S/R]) A (E_Flag)

FS.E,[S/R] « S;

Reset E
F(4-5);

PH_Indication(symbol) = { PA[l,..I.], SDIJ,K],
FC/n,n], DAJ4n V 12n], SA[4n Vv 12n],
INFO/[n,..n__], FCS{8a], ED,[T], FS.E[S/R] } V

(symbol = FS.E[S/R]) A —(E_Flag)

FS.E\[S/R] «+ R;

Tx FS Symbols
F(5-5);

PH_Request = { PA [I,..I_], SD,[J,K], FC,{n,n],
DAf4n V 12n], SA [4n V 12n), INFOn,..n_],
FCS,[8n], ED,[T], FS.EX[S/R], FS.A,[S/R], FS.C,{S/R]
} A

(symbol = ED,[T])

symbol < symbol + 1;

PH W = {Pml I—] SD‘[J K]v FC,[II,II],
DAJf4n v 12n], SA [4n V 12a], INFOIn,..n_],
FCS,[8n), ED,[T], FS.E[S/R], FS.A,[S/R], FS.C[S/R]

} A
(symbol = FS.CIS/R] )

PDU_Ack A —(Wrap)

A _Flag

Tx_ldle < set;

=(A_Flag)

Repeat Ack
Symbols
AQ1-1);

PH_Indication(symbol) = { PA[I,..I_], SD ] K],
FC/[n,n], DA[4n V 12n], SA [4n V 12n], ED[T],
FS.E[S/R], FS.A[S/R], FS.CIS/R] } A

(symbol = FC[n,n])

PH_Request(symbol) «
PH_Indication(symbol);

symbol « symbol + 1;
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Ack Repeated PH_Request = { PA[I,..I_], SD,[J,K], FC,[n,n], Tx_Idle « set;
Al-10; DA,[4n V 12n], SA,[4n Vv 12n], ED,[T], FS.E*{S/R],
FS.A[S/R], FS.C,[S/R] } A
(symbol = FS.C[S/R] )
Subtoken PDU_Sbtk A ~(Wrap)
P1-S0;
Usable Subtoken | Ring_Operational A MA_SbTk_Limits A Usable_SbTk « true;
S(0-1); {{Syn_Req_Queued v
(Asy_Req Queued A
Req Token_Class = nonrestricted) A
SL, s PDU Q.DA < EL] A
[Req_ PDU_Queued Length < CLASS, ]}
! Unusable —Ring_Operational v "MA_SbTk_Limits v Usable_SbTk « false;
Subtoken —(Syn_Req_Queued vV Asy_Req_Queued) V
S(0-1); {[Syn_Req_Queued v
(Asy_Req Queued A
Req_Token_Class = nonrestricted) A
(PDU_Q.DA < SL, v PDU_Q.DA > EL)] A
| [Req_ PDU_Queued_Length > CLASS,]}
Repeat Subtoken | PH_Indication(symbol) = { PA[I,..L}, SDJ.K], PH_Request[symbol] «
Symbols FC[n,n], SL[4n or 12n], EL [4n or 12n], CLASS [n,n], | PH_Indication(symbol);
| S(1-1); ED/[T,T]} A symbol « symbol + 1;
=(Usable_Sbtk) A —(EL [4n or 12n] = MA[4n or 12n]
A (symbol = FC[n,n])
Capture Usable | Usable_SbTk Tx_ldle « set;
Subtoken
$1-10;
Remove -Usable_Sbtk A EL, = MA Tx_ldle « set;
Unusable Sbtk
S1-10;
Subtoken PH_Request = { PA[I,..I_.], SD,[J,K], FC,[n,n], Tx_Idle «- set;
Repeated SL.{4n V 12n], EL,{4n V 12n}, CLASS,[n,n),
$1-10; ED,[T,,T,, A
(symbol = ED,[T,] )
Usable Subtoken | Usable_SbTk A SbTk_Received STHT < enabled;
Received STHT « CLASS, [n,n];
10-S2;
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. lg Predicate
(S-buf{symbol] vV A-buf{symbol)) = Tx_ldle « clear;
{ PA(1,..L), SD,[J,K], FC,[n,n], DA,[4n or 12n], PH_Request[symbol] « (S-
SA,[4n or 12n], INFO,[n,..n_,], FCS,[8n], ED,[T], buffsymbol] v
FS.E[R/S], FS.A[S/R], FS.C,IS/R] } A (symbol = A-buffsymbol]);
SD,[1) symbol « symbol + 1;
PH_Request(symbol) = { PA(l,..L], SD,[J,K],
FC,[n,n], DA [4n or 12n], SA [4n or 12n],
INFO[n,..n_.), FCS,[8n], ED,[T], FS.E,[R/S],
FS.A[S/R], FS.C,[S/R] } A
(symbol = FS.C[S/R])
Another Frame ((S-buf{symbol] vV A-bufisymbol]) » null) A
5(3-2); Usable_SbTk
Station Holding | STHT expires V Tx_ldle « set;
SbTk Tx [(Syn_Req_Queued > Remaining Time) A
Completed (Asy_Req_Queued > Remaining Time)] v
$3-10; (—Syn_Req_Queued A —Asy_Req Queued)
Token PDU_Tk
P1-TO;
Ring Opr and Ring_Operational A Late Ct = 0 TRT « T_Opr;
Token Early
T(0-1);
T(5-6);
Ring Opr and Ring_Operational A Late Ct > 0 Late Ct « 0;
Token Late
T(0-1);
T(5-6);
Ring not Opr “(Ring_Operational) T_Opr « T_Neg;
T(0-1); TRT « T _Opr;
T(5-6); Late Cte1;
Ring Operational « set;
Noarestricted FC.L=0 Token_Class «
T(1-2); nonrestricted
T(6-7);
Restricted FC.L = 1 Token_Class « restricted
T(1-2);
T(6-7);
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Transition Enabling Predicate Action

SD.l1)

T(2-3); {[Syn_Req Queued A Syn_Allowed] V
[Late Ct =0 A
(Asy_Req Queued A
Req Token_Class = FC,.L A
(Non_priority Request V
TRT < T _Pri(Request_Priority) A
(Nonrestricted Request A
(B_Flag AReq_Token_Class = restricted))]}
| Unusable —Ring_Operational Vv Usable_Tk « false;
{ Token ={[Syn_Req_Queued A Syn_Allowed] v
| T(2-3); [Late Ct =0 A
‘ (Asy_Req_Queued A
Req_Token_Class = FC,.L A
(Non_priority_Request V
TRT < T_Pri(Request_Priority) A
(Nonrestricted Request A
(B_Flag A Req_Token_Class = restricted))]}
| Repeat Token PH_Indication(symbol) = { PA[I,..L], SD,[J,K], PH_Request[symbol] «
| Symbols FC/[n,n], SL[4n or 12n), ED[T,,T,]1 } A PH_Indication(symbol);
| T(3-3); =(Usable_Tk) A (symbol = FC|[n,n]) symbol « symbol + 1; |
| Capture Token | Usable Tk Tx_ldle « set;
T3-10;
Token Repeated | PH_Request = { PA[I,..I_], SD,[J,K], FC,[n,n], Tx_Idle « set;
T3-10; ED,[T,,TJ], A
(symbol = ED,[T,])
Usable Token Usable Tk A Tk_Received THT « disabled;
Received
| 10-T4;
Token Early Late Ct = 0 THT « TRT;
T4-EO; TRT « T_Opr;
Token Late Late Ct > O THT < expired;
T4-LO; Late Ct « 0;
Tx Syn Frame S-buf{symbol] = { PA_[I,..L], SD,[J,K]}, FC,[n,n], Tx_Idle « clear;
symbols DA, [4n or 12n], PH_Request{symbol] « S-
E(0-0); SA,[4n or 12n], INFO/[n,..n_,], FCS,[8a], ED,[T], buf{symbol];
1.(0-0); FS.E[R/S], FS.A[S/R], FS.C,[S/R] } A (symbol = symbol < symbol + 1;
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Syn Frame with
Sbtk Info Issued
E(0-1);
L(0-1);

PH_request = { PA[I,..L], SD,{J.K], FC,[n,n], DA,[4n
or 12n}, SA,[4n or 12n], INFO,[n,..n_.], FCS,[8n],
ED,[T), FS.E[R/S], FS.A[S/R], FS.C,[S/R] } A
(FC,[n,n] = LLC or SMT Syn Frame with Subtoken)

A (symbol = FS.C[S/R])

—— - — o —————————————)

Syn Frame
without Shtk
Info Issued
E(0-1);
L(0-1);

PH_request = { PA,[1,..L]}, SD,[J.K], FC,[n,n], DA,[4a
or 12n], SA,[4n or 12a], INFO,[n,..n__], FCS [8a],
ED,[T], FS.E,[R/S), FS.A,[S/R], FS.C,[S/R] } A
(FC,[n,u] = LLC or SMT Syn Frame without Subtoken)

A (symbol = FS.C[S/R))

Another Syn
Frame
E(1-0);
L(1-0);

(S-buf[symbol]) # null) A Ussble Tk

Station Holding
Tk Tx
Secondary Ring
Completed
E1-10;E4-10;
L1-10;

TRT expires V (synchronous allowed A
Syn_Req Queued > Syn_band_allocation) V
~Usable_Tk

Wait Other Ring
E(1-1);

E(4-4);

L(1-1);

L(4-4);

E(7-7);
E(11-11);

Asy Service
E1-E2;

~Usable Tk A —Syn_Req Queued

Token_Class = nonrestricted

Token_Class = restricted

AMM‘] = ( PA:[II"IJo SDx[J vK]9 Fcl[n'n]’
DA[4n or 12n],

SA,[4n or 120], INFOQ,[n,..n_], FCS,[8n], ED,[T],
FS.E[R/S], FS.A[S/R], FS.C,[S/R] } A (symbol =
SD,J])

PH_Request{symbol] « A-
buffsymbol];
symbol < symbol + 1;
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or 12n], SA,[4n or 12n], INFO/[n,..n_.], FCS,[8n],
ED,[T), FS.E[R/S], FS.A[S/R], FS.C,[S/R] } A
(FC,[n,n] = LLC or SMT Asy Frame with Subtoken)
A (symbol = FS.C[S/R])

PH_request = { PA[I,..L], SD,[J,K], FC,[n,n], DA,[4n
or 12n], SA[4n or 12n], INFO,[n,..n_], FCS,[8n],
ED,[T], FS.E|[R/S], FS.A[S/R], FS.C,[S/R] } A
(FC,In,n] = LLC or SMT Asy Frame without
Subtoken) A (symbol = FS.C,[S/R])

Frame

E(4-3);

(A-buf{symbol]) # null) A Usable Tk A

Station Holding
Tk Tx Primary
Ring Compieted
E(1-9);

E(4-5);

TRT expires V (synchronous allowed A
Syn_Req Queued > Syn_band_sllocation) Vv
—Usable_Tk

Wait,, < false;

Ring Opr
E(5-6);
E(9-10);
L@2-3);
C(3-4);

Ring_operational

Nonrestricted
E(6-7);
E(10-11);
L(3-4);
C(4-5);

(Token_Class = nonrestricted) Vv —(R_Flag)

B_Flag + set;

Restricted
E(6-7);
E(10-11);
L(34);
C(4-5);

(Token_Class = restricted) vV R_Flag

B_Flag < clear;

Ring Not Opr
E(S-7);
E(9-11);
L(3-5);
C(3-5);

~(Ring_Operational)

T_Opr « T_Neg;
TRT « T_Opr;
Late Cte1;

Ring—_Opeutioml - get;

Issue Token

E(7-8);

Wit = false) A (Wait,,,, = false)
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FC,[II,II], ED[TI’TJ } A (symbol = PA,[I]]) A

~Ussble_Tk

PH_Request[symbol] + Tk- |

buf{symbol]};
symbol « symbol + 1;

Token Issued PH_Request{symbol] = { PA[I,..L], SD,[J,K], Tx_Idle « set;
x-10; FC,[n,n}, ED[T,,T,] } A (symbol = ED[T.))
x=E8,E12,L5,
| C5,T7;
Transmit requested_service_class = Immediate A TRT « T_Opr;
Immediate —Ring_Operational A Late Ct« 0;
10-MO; Token_Class = none Tx_Idle « clear;
Tx Immediate I-buf{symbol] = { PA[I,..L], SD,[J,K], FC,[n,n], Tx_ldle « clear;
Symbols DA [4n or 12n], SA [4n or 12n], INFO,[n,..n_], PH_Request[symbol] « I-
M(0-0); FCS,[8n], ED,[T], FS.E,[R/S], FS.A,[S/R], FS.C[S/R] | buffsymbol];
} A (symbol =SD,[J]) symbol « symbol + 1;
End Tx I-buf{symbol] = { PA[I,..L}, SD,UJ,K], FC,[n,n], PH_Request[symbol] «
Immediste DA [4n or 12n], SA,[4n or 12n], INFO,[n,..n_], I-buf[symbol];
Mi1-M2; FCS,[8n], ED,[T], FS.E,[R/S], FS.A,[S/R], FS.C[S/R]
} A
(symbol = FS.C.[S/R])
Ancther I-buffsymbol) » null
Immediate
Frame
M(1-0);
Tx Immediate I-bufisymbol] = nuil
Completed
M1-M2;
No Token Class | Token_Class = none Tx_Idle « set;
M2-10; TRT « T _Opr;
Late Cte1;
Generate Ack Ack_Frame
10-GO;
Tx SD,FC,DA, | Ack-buf{symbol] = { PAI,..L], SD,{J,K], FC,[n,n], Tx_Idle « clear;
SA,ED Symbols | DA, [4n or 12n], SA [4n or 12n], ED,[T] } A (symbol PH_Request{symbol] «
G0-GO; = SD.[I]) Ack-buf{symbol};

symbol < symbol + 1;
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PH_Request(symbol) = { PA(,..L], SD[J.K},

M(1-2); FC,[n,n], DA, [4n or 12n], SA,[4n or 12a], ED,[T] } A
(symbol = ED,[T])
Set E PH_Indication(symbol) o, ., = { FS.E[S/R] } A FS.E,[S/R] = §;
G(l°2), E_th i
Reset E PH_Indication(symbol) o, 4, = { FS.E[S/R] } A FS.E,[S/R] « R;
G(1-2); —E_Flag
Set A PH_Indication(symbol) ., s, = { FS.A/[IS] } FS.A,[S/R] « S;
G(2-3); v A_Flag
Set C PH_Indication(symbol) o, ., = { FS.C[S/R] } A FS.C,[S/R] « §;
G(34); C_Flag A —N_Flag
Tx FS symbols | PH_Request(symbol) = { PA[I,..L], SD,[J,K], PH_Request
G4-G4; FC,[n,n], DA, [4n or 12n], SA,[4n or 12n], ED [T} } A [symbol] «
(symbol = ED,[T]) { FS.E,[R/S], FS.A[S],
FS.C,(S] }
Ack Issued PH_Request(symbol) = { PA,[I,..L], SD,[J,K], Tx_Idle « set;
G4-10; FC,[n,n], DA, [4n or 12n}, SA,[4n or 12n), ED,[T],
FS.E.[R/S], FS.A[S], FS.C,[S] } A
(symbol = FS.C,[S/R])
Recovery
10-C0;
Claim Entry SM_MA_CONTROL.request{Claim] T_Opr « T_Max;
C(0-1); TRT « T_Opr;
Token_Clas = none;
Tx Claim Claim-buf{symbol] = { PA[I,..L], SD.[J,K], FC,[n,n], | Tx_'dle « clear;
Frame Symbols | DA, [4n or 12n], SA,[4n or 120], INFO,[n,..n_], PH_Request[symbol] «
C(2-2); FCS,{8n], ED,[T], FS.E,[R/S], FS.A[S/R], FS.C,[S/R] } Claim-buf[symbol];
} A (symbol = SD.[J)) symbol «- symbol + 1;
Successful My_Claim TRT « T_Opr;
Claim Token_Class «
C(2-3); nonrestricted;
Failed PH_Request{symbol] = Claim-buf[symbol] A TRT Beacon_type «
C2-BO; expires Unsuccessful Claim;
Beacon.DA <« null;
Unusable Token | Tk_Received A —Usable Tk THT < disabled;
Received Tx_ldle « clear;
10-TS;
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Tx_ldle « clear;

Beacon-buffsymbol] = { PA{,..L], SD,[J,K],
FC,[n,n], DA [4n or 12n], SA,[4n or 12n],
INFO,[n,..n_.], FCS [8n], ED,[T], FS.E,[R/S},
FS.A,[S/R], FS.C,[S/R] } A (symbol = SD,[J])

Tx_idle « clear;
PH_Request[symbol] «
Beacon-buf{symbol};
symbol « symbol + 1;

PH_Indication(symbol) « { Beacon symbols } A
My_Beacon
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6. Local and Timer Data Type Specification

Table 3 presents the local and timer data type specification. This table

contains each data type used in the machines transition tables. Its range, initial value, and

purpose are included. Values on/off, true/false, set/reset of boolean variables have the

same meaning and can be used interchangeably. Data types marked with (*) are not

specified in the FDDI MAC standard.

‘ Count of reportable frame errors.
| Frame_Ct [0, o) 0 Frame Counter -
), Count of all frames received.
Late_Ct {0, o) 0 Late Counter -
Count of TRT expirations (Token Lateness).
Lost_Ct [0, o) 0 Lost Counter -
Count of PDU detected as lost.
symbol_ct (*) [0, o) 0 Lost Counter -
Count of symbols in a transfer of data.
Ack _ct (%) [0, o0) 0 Acknowledgment Counter -
Count of acks received.
A_Flag boolean reset Address recognized indicator Flag -
[set, reset] Indicates Destinations Address (DA)
match in last received frame.
C_Flag boolean reset Frame copied indicator Flag -
[set, reset) Indicates successful copying of last received
frame.
E_Flag boolean reset Error detected indicator Flag -
{set, reset] Indicates error detected in last received frame.
H_Flag boolean reset Higher address Flag -
[set, reset] Indicates Higher Source Address (HSA)
received.
L_Flag boolean reset Lower Address Flag -
[set, reset] Indicates Lower Source Address (LSA)
received.
M_Flag boolean reset My address Flag -
[set, reset] Indicates My Source Address (MSA) received.
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]

Next address Flag -
[set, reset] Indicates Next Station (NSA) Addressing.
R_Flag boolean reset Restricted class Flag -
[set, reset] Indicates restricted Token_class for the last
valid Token_received.
Rc_Start boolean false Received start signal -
[true, false] Indicates the starting of an incoming PDU.
T_Req integer number of 0 Requested TTRT -
symbol times at 100 Indicates the Requested TTRT for this MAC’s
Mbits/sec syachronous traffic to negotiate for the lowest
[T_Min, T_Max] value of T_Opr.
T_Bid_Rc integer number of 0 Bidding TTRT Received -
symbol times at 100 Indicates the Bidding TTRT received by this
Mbits/sec station in Claim Frames.
[T_Min, T Max]
T Max integer number of 0 Maximum TTRT -
symbol times at 100 Indicates the Maximum TTRT to be supported
Mbits/sec by this station.
[0, o)
T_Min integer number of 0 Minimum TTRT -
symbol times at 100 Indicates the Minimum TTRT to be supported
Mbits/sec by this station.
[0, =)
T_Neg integer number of T_Opr = |Negotiated TTRT -
symbol times at 100 | lowest value |Indicates the Negotiated TTRT during Claim
Mbits/sec of T_Req |process (In receiver).
{T_Min, T_Max] The lowest value of T_Req becomes T_Opr
for the ring.
T Opr integer number of T Max |Operative Value of TTRT -
symbol times at 100 Indicates the Operative value of TTRT for this
Mbits/sec station (in transmitter).
(T_Min, T_Max]
T_Pri(Request_p) integer 0 Priority Request Values -
{0, o) Set of Request priority Token rotation time
thresholds.
Token_Class 3 values 0 Class of token
Restricted, nonrestricted, and none
THT integer number of | curreat value | Token-Holding Timer -
‘ symbol times at 100 of TRT |Controls the time of a MAC Asynchronous
Mbits/sec frame transmission.
[T_Min, T_Max]
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integer number of Token-Rotation Timer -
symbol times at 100 | of T_Opr |Controls ring scheduling during normal
Mbits/sec operation and is used to detect and recover
[T_min, T_Max] from serious ring error situations.
integer number of 0 Target-Token Rotation Time -
symbol times at 100 Indicates the various times that can be
Mbits/sec assumed during different MAC processes
[0, o) (T_Req, T_Bid_Rc, T_Max, T_Min, T_Neg,
T_Opr).
integer number of 0 Valid-Transmission Timer -
symbol times at 100 To recover from transient ring error situations.
Mbits/sec
[0, o)
STHT(*) integer number of 0 Subtoken Holding Timer -
symbol times at 100 Controls the time of the subtoken data
Mbits/sec transmission to ensure controlled concurreat
[0, o) access.
boolean false Idle signal -

[true, false] The Receiver generates this signal whenever

the incoming symbol is an idle symbol.
Tx_Idle(®) boolean false Tx Idle variable -

[true, false] The Transmitter sets this local variable
whenever it is requested to eater the TX IDLE
state. This occurs due to an Idle, or Fr_Strip,
or FO_error signal from the receiver or after
completion of a PDU transmission.

FO_Error boolean false Format Error signal -

[true, false] The Receiver generates this signal whenever
an incoming symbol does not conform with a
sequence specified in the FDDI MAC
standard.

FR_Strip boolean false Frame Strip signal -

(true, false] The Receiver generates this signal whenever
an incoming symbol sequence indicates a
condition for removing a PDU from the ring.

PDU_Frame(*) boolean false Frame signal -

[true, false] The Receiver generates this signal when it
scans the FC field of the incoming PDU and
recoguizes that this PDU has a format of
Frame.
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Ack signal -

The Receiver generates this signal when it
scans the FC field of the incoming PDU and
recognizes that this PDU has a format of
Acknowledgment.

PDU_Tk(® boolean false Token signal -

[true, false] The Receiver generates this signal when it
scans the FC field of the incoming PDU and
recognizes that this PDU has a format of
Token.

PDU_Sbtk(*) boolean false Subtoken signal -

[true, false] The Receiver generates this signal when it
scans the FC field of the incoming PDU and
recognizes that this PDU has a format of
Subtoken.

Copy_Frame(*) boolean false Copy Frame variable -

[true, faise] The Receiver set this variable when a frame is
to be copied for the local eatity (e.g., an LLC
or frame addressed to this station).

FR_Received boolean false Frame Received signal -

[true, false] The Receiver generates this signal when a

PDU of Frame format is received.
Ack_Frame(*) boolean false Ack Frame signal -

[true, false] The Receiver generates this signal for the
transmitter on the opposite ring when a PDU
of Frame format was received and copied
locally into the receive buffer.

Copy_Ack(*) boolean false Copy acknowlegment -

[true, false] The Receiver set this variable when an
acknowledgment is to be copied to save the
frame status report for the local entity.

My_Claim boolean false My Claim signal -

[true, false] The Receiver generates this signal to indicate
an incoming ciaim frame with this MAC's
own bid.

Higher_Claim boolean false Higher Claim signal -

[true, false] The Receiver generates this signal to indicate
an incoming ciaim frame with a MAC higher
bid.
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that secondary ring is transmitting.

Name Range "~ Initial B 7 ;
value ;

e —— O [ S —— |

Lower_Claim boolean false Lower Claim signal - i

[true, false] The Receiver generates this signal to indicate }

an incoming claim frame with a MAC lower |

bid. 1'

{My_Beacon boolean false My Beacon signal - {
[true, false] The Receiver generates this signal to indicate |

an incoming MAC’s own beacon frame. }

Other Beacon boolean false  |Other Beacon signal - f

{true, false] The Receiver generates this signal to indicate
an incoming beacon frame from other MAC. ‘

Other LLC_or_SMT boolean false Other LLC or SMT frame signal -

) [true, false] The Receiver generates this signal to indicate
that an incoming frame is an LLC or SMT
frame addressed to other station.

Sbtk_Flag(®) boolean set Subtoken Flag -

[set, reset] Indicates if an incoming subtokea is usable or l
not.

Sbtk_Received(*) boolean false Subtoken Received signal -

(true, false] The Receiver generates this signal to indicate
that a subtoken has been received.

Usable_tk(*) boolean false Usable Token -

ftrue, faise] The Transmitter uses this variable to check if
the token can be captured.

Usable_Sbtk(*) boolean false Usable Subtoken -

[true, false] The Transmitter uses this variable to check if
the subtoken can be captured.

Tk_Received boolean false Token Received signal -

(true, false] The Receiver generates this signal to indicate
that a token has been received.

Ring_Operational boolean true Ring Operational -

[true, false] Indicates the operational status of the ring.

Wrap(*) boolean true Wrap configuration variable

(true, false] Indicates that a serious physical failure has
occurred and the configuration changed to one
logical ring. This is an overall network-
controlling function.

Wait o (*) boolean true Wait primary ring transmission-

[true, false] During simultaneous transmission indicates
that primary ring is transmitting.

Wit e (*) boolean true Wait secondary ring transmission-

[true, false] During simultaneous transmission indicates
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Synchronous Request Queued -

[true, false] Indicates a request for transmission of
synchronous PDU queued.
Syn_band_allocation boolean false Synchronous Bandwidth Allocation -
[true, false] Indicates the alloted bandwidth for the stations
during the synchronous service.
Asy Req Queued boolean false Synchronous Request Queued -
[true, false] Indicates a request for transmission of
asynchronous PDU queued.
Remaining_Time(*) integer number of 0 Remaining time of subtoken duration-
symbol times at 100 Indicates the amount of time available after
Mbita/sec transmission of frames.
[0, max)
Req_Q(length)(*) integer number of 0 Requested Queued Length -
symbol times at 100 Indicates the iength in number of symbol times
Mbits/sec (duration) of the requested PDU queued for
[0, o) transmission.
Sbtk_Class(*) integer number of 0 Subtoken Class -
symbol times at 100 Indicates the length in number of symbol times
Mbits/sec (duration) of the Subtoken. Class is a stepwise
[0, o) function of the length.
PH_Invalid boolean false PH_Invalid is the signal parameter of the PHY
[true, false] to MAC Invalid Indication primitive - When
this occurs the PHY eatity is unable to preseat
a valid symbol to MAC and the Receiver
enters into its LISTEN state.
SM_MA_ boolean false SMT to MAC Control Request primitive with
CONTROL. [true, false] Beacon signal
request(beacon) parameter - When this occurs the Transmitter
enters into its TRANSMIT BEACON state.
SM_MA_ boolean false SMT to MAC Control Request primitive with
CONTROL [true, false] Reset signal parameter - Whea this occurs
request(reset) MAC generates the MAC_Reset signal.
Mac_Reset boolean false MAC Reset signal -
[true, false] MAC generates this signal in response to a
control_action requested by SMT to reset the
MAC state machines (Receiver and
Transmitter). When it occurs the Receiver
enters into its LISTEN state and the
transmitter enters into its IDLE state.
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array [1..max] of
buffer

TR ..
PH_Request Buffer - It is the output buffer at
the Transmitter side. It holds each outgoing
symbol on a transfer of data from the MAC |
entity to the PHY eatity. This transfer of data |
occurs whenever 8 PH_Request signal is sent |
to PHY whenever MAC has a symbol to
output.

array [1..max] of
buffer

PH_Indication Buffer -

input buffer at the Receiver side. It holds each
incoming symbol on a transfer of data from
the PHY entity to MAC eatity. This transfer
of data occurs whenever a PH_Indication
signal comes from PHY after a symbol is
decoded

S-buf(symbol)(*)

array [1..max] of
buffer

Synchonous Buffer -
buffer for transmission of synchronous queued
SDUs.

A-buf{symbol)(*)

array [1..max] of
buffer

Asynchonous Buffer -
buffer for transmission of asynchronous
queued SDUs.

¥.cv-buf(symbol)(*)

array [1..max) of
buffer

Receive Buffer - It is the buffer for copying
frames to the local entities.

Symbol

[Pan,..L)

[0..MFL]

[ field of [1,.._] idle |

" | Preamble of a PDU format -

Symbol is a pointer to the current symbol on
the buffer array. Symbols are: J, K, T, R, S,
I, or n and they represent the smallest
signalling element used by the DDL eatities.
For both Receiver and Transmitter machines
symbol is a generical representation to denote
a pointer to the current symbol.

symbols Contains a variable number of Idie symbols.
The subscripts , and , stand for received and
transmitted respectively.
SD{J K] field of J and K Starting Delimiter of a PDU format -
symbols Contains the symbol J followed by K.
DA[4n Vv 12n) field of 40 or 12n Destination Address of a frame format
symbols Coatains a fixed number of either four or
twelve data quartet symbols.
SA[4n V 12n] field of 4n or 12n Source Address of a frame format -
symbols Contains a fixed number of either four or
twelve data quartet (n) symbols.
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[ field of 2n symbols

S—

Frame Control field of a PDU format -
Contains two data quartet (n) symbols whose |
meaning are: the first data quartet n = CLFF |
bits and the second data quartet n = ZZZZ |
bits.

J
INFO[n,..n__] field of [n,..n__] of Information field of a frame format -
symbols Contains a variable number of data quartet (n)
symbols.
FCS[8n} field of 8n symbols Frame Check Sequence of a frame format -
Contains eight data quartet (n) symbols.
ED|[1T v 2T] field of 1T or 2T Ending Delimiter field of 8 PDU format -
symbols
FS.E[S/R], field of 2 3 S/R Frame Status field of a frame format -

FS.A[S/R], FS.C[S/R]

symbols

Contains three or more control indicator
symbols Set (S) or Reset (R).

SL{4n Vv 12n]

field of 4n or 12a
symbols

Start Limit field of a subtoken format -
Indicates the address of the station where the
subtoken starts to be valid for use. Contains a
fixed number of either four or twelve data

Contains one or two Terminate (T) symbols.
quartet symbols.

EL[4n V 12n]

field of 4n or 12n
symbols

Ending Limit field of a subtoken format -
Indicates the address of the station where the
subtoken stops to be valid for use. Contains a
fixed number of either four or twelve data

quartet symbols.

CLASS[20)(*)

field of 2n symbols

Class field of a subtoken format -

Indicates the duration of the frame allowed to
be transmitted by the station using this
subtoken. Contains a fixed number of two data
quartet symbols (n).

Valid Data Leagth

boolean
[true, false]

Valid Data Length-

(a) Is an integral number of Dat1 symbols
pairs between SD and ED;

(b) Satisfies the table of interpretation of FC

boolean
(true, false]

Valid Frame Check Sequence-
Satisfies the criteria of FCS checking

field in the MAC FDDI standard.
| |

My Short Address
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V. PROTOCOL VERIFICATION

A. VERIFICATION

The basic goal of a formal model for a protocol specification is to eliminate the
ambiguities and difficulties associated with completeness and correctness. To avoid
design errors before any implementation, logical reasoning can be applied to demonstrate
that the protocol meets its specification. All possible interactions on the specified layer
service are checked to ensure that the protocol satisfies the layer’s specification. This is
the primary goal of protocol verification.

Conceptually, protocol verification checks for general, specific, safety, and liveness
properties. General properties are implicit parts of all service specification (e.g.,
deadlock, starvation, completeness, and termination). Specific properties require the
provision of the particular service specification (e.g., the synchronous service bandwidth
allotment in FDDI). Safety is the conformance verification of the protocol. It compares
actual protocol actions with its service specification (e.g., if a station captures a token,
it will first deliver its synchronous traffic and then its asynchronous traffic according to
the timed-token rules). Liveness is a property that ensures the completion of specified
services in a finite time. For analysis of protocol efficiency and responsiveness numerical
bounds are considered.

Protocol correctness by the establishment of proofs is one effective approach used

in protocol verification. Proofs are particularly useful for showing whether a protocol is
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modeled correctly. This verification technique identifies errors and can determine the

cause.

B. PROTOCOL CORRECTNESS THROUGH PROOFS

A major strength of the formal specification presented in this thesis is that it allows
for proof of protocol correctness by the application of elementary logic to statements.
Given a problem statement, chain-reaction arguments can be established by navigating
through the state diagram and transition table. Statements are matched with enabling
predicates. Each enabling predicate has the property that it must be either true or false.
The statements are connected in a chain-reaction or combined to form new statements.
As a result, truth tables can be constructed to prove that a statement will be either true
or false on the protocol specification. Proofs can be established to verify the correctness
of all protocol modules and chain-reaction arguments which consider each module
precondition and postcondition can be applied to prove the complete protocol. The next
subsection provides an example of proof for correctness, given a specific protocol
module.

To formalize the proof the following commonly used notational conventions are
assumed:
: and;
: or;

: not;
: implies.

<>
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The chain-reaction type of argument is used, which is symbolized by the tautology
(=9 A @=nl=@=1).
1.  Proof that an LLC Frame is Copied and an Acknowledgment is Sent
Given the following statements prove that an arriving LLC frame will be
copied by the Destination Address (DA) station and an acknowledgment returned to its
originator. Given the following statements:
® (a) The arriving frame has the contents of its DA field equals to one address of the
set of this Station Short Addresses (SSA);

® (b) The Frame Status field (FS) has its Control Indicator "A" received as reset (R);
and,

@ (c) The frame is valid;

prove that in accepting the statements the MAC Receiver will copy the frame locally and
return an acknowledgment.

To prove that the MAC Receiver will copy the frame and an acknowledgment
will be sent it must be shown that (1) the Receiver will set the copy flag (C_Flag), (2)
the Receiver will sent the frame acknowledgment signal (SIGNAL Ack Frame) to the

transmitter on the opposite ring which (3) will transmit an acknowledgment.

Proof:
In the protocol formal specification the statements (a), (b), and (c) are
equivalent to [(FC.L, = 0) A (DA, € {SSA})), FS.A, = R, and Valid_Frame

respectively. All the statements are assumed to be true, unless otherwise. specified.
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Let the statements be denoted as follows:

p: [(FC.L, = 0) A (DA, € {SSA})],
q: FS.A, =R,
r. Valid_Frame.

Also, denote the following statements

a: A_Flag,
s: Copy_Frame,

c: C_Flag, and

k: SIGNAL Ack _Frame

t: Tx_ldle « clear;

PH_Request[symbol] « Ack-buffsymbol];
symbol <« symbol + 1;

u: PH_Request(symbol) = { PA,[I,..L], SD,[J,K], FC,[n,n], DA,{4n or
12n}, SA,[4n or 12n], ED,[T], FS.E,[R/S], FS.A,[S], FS.C,[S] } A (symbol =
FS.C,[S/R))

v: Tx_Idle « set;

Part (1): To show that if p and r, then c.

The MAC Receiver State Diagram (Diag. 2) and transition table show that
the statement p is an enabling predicate for the transition F(0-1) “DA Match”. The
corresponding action implied by this transition is the statement a. Therefore,

D™ a.

The transition F(1-2) "Copy Frame to Local entity (LLC, SMT, MAC)

shows that
a=s,

Given the statement r and the resultant logic s the transition F(7-8) "Frame

Copied" showed in Diag. 2a, it follows that the statement ¢ holds in

(r A s)y=c.
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Part (2): To show that if ¢ and c, then k.

Given ¢ and the resultant logic of ¢, they will form the enabling predicate for
a transition F(7-8) "Ack Frame" in Diag. 2a. of the MAC Receiver. It follows that k
holds as a corresponding action of this transition, therefore

@Ao)=k

This part of the proof showed that the Copy_Flag will be set and the
SIGNAL Ack_Frame will be sent to the transmitter on the opposite ring.

Part (32): To show that if & then ¢.

The Mac Transmitter State Diagram (Diag. 9) and Transmitter Transition
Table show that the statement k is an enalling predicate for the transition 10-GO
"Generate Ack.” The Transmitter at this point will have the symbol pointer pointing to
the symbol J of the SD field in the buffer array Ack-buf of symbols. The transition G(0-
0) Tx SD,FC,DA,SA,ED Symbols will incrementally occur for every symbol implying
the corresponding action z. Symbols from the Acknowledgment buffer are placed into the
PH_indication buffer for transmission over the physical medium. Therefore,

k=1

Part (3b): To show that if 7 then u, and if u then v.

The transition G4-10 "Ack Issued" shows that when the symbol being
transmitted out of PH_indication(symbol) buffer reaches the control indicator C of the
FS field then the Transmitter has issued the acknowledgment and entered the TX IDLE
state I0. For simplification, it is assumed that the pointer symbol is incremented and will

reach the control indicator C. Note that, if no assumption is made, this step can also be
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proved by induction on the array of symbols. Also, the proof could be further extended
to show that the acknowledgment is sent with the control indicators E reset, A set, and
C set in the frame status field FS. Therefore,
t=u
and finally,
u=v,
This part of the proof showed that the Transmitter on the opposite ring has

sent an acknowledgment to the frame originator which completes the proof.
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VI. CONCLUSIONS

A. REVIEW OF THE RESEARCH

The goal of the research documented in this Thesis was to develop the details at
the MAC level of an improved FDDI protocol and to provide its formal specification.
Essentially, the protocol improvement is achieved by increasing the ring utilization. The
Thesis investigated the FDDI MAC and developed the details of the access control
mechanism of a protocol that can raise the total network throughput to a maximum of
300 Megabits per second while maintaining the same data transfer of 100 Megabits per
second of the original FDDI. The method developed to increase throughput was based
upon simultaneous transmissions on the dual ring with concurrent .ring access. A single
MAC which controls access to both rings was proposed. This MAC structure adds a
degree of complexity to the existing token ring FDDI network; however, with the current
improvements in fiber optics technology it is feasihle to design and implement such
interface.

This research presented this method of access to ensure the improvement in
throughput. In fact, this method called Timed-Token Controlled Concurrent Access is an
enhancement to the Timed-Token Access method of FDDI which remains unchanged in
the improved protocol. This method allows concurrent access to different partitions of
the same physical medium; thus, increasing ring utilization. The method introduced

additional PDU formats necessary to carry out the concurrent access to the ring. In
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addition, changes in the FDDI stripping mechanism for protocol normal operation were
necessary. Also, Algorithms to generate subtoken duration were presented and analyzed.

The improved protocol was designed to meet the requirements for a top level
backbone network while maintaining key characteristics of FDDI. This backbone network
can be used primarily to link lower speed Local Area Networks (LAN), including other
FDDI LAN. The key characteristic of reliability offered by FDDI through its ring
reconfiguration function is maintained in the improved protocol. When a failure occurs
the same recovery procedures of FDDI will reconfigure the improved FDDI network.
When in this condition, the network loses the improvement in throughput; however, it
maintains the same functionality of FDDI, -+hich allows communication to continue.
Another key characteristic embedded in the timed-token protocol is the initialization
process. This process remains unchanged in the improved protocol.

The major achievement of this thesis was the conversion of the improved FDDI
protocol into a formal model of specification. The flexibility and suitability of the model
*Systems of Communicating Machines” allowed the formulation of a detailed and precise
protocol specification.

This specification is useful in several ways. First, it enhances the protocol
understanding and interpretation. Second, it contributes to reduce protocol ambiguities
which is a good feature for interoperability achievement. Third, it allows control of each
protocol module or state behavior which is a desirable feature in verification and error
checking. Finally, the specification can be used to proof the protocol correctness; thus,

it provides means to conduct a protocol exact analysis.
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B. ISSUES FOR FURTHER RESEARCH

This thesis envisioned a Local Area Network protocol that enhances the current
FDDI. FDDI is already an enhancement of 802.5 token ring designed to take advantage
of fiber optics using a timed mechanism that achieves simplicity and fairness. However,
all the possibilities were not explored. FDDI can be improved. The resources of an
FDDI network are waiting to be efficiently used. The improved FDDI protocol
researched in this Thesis is a logical superset of FDDI with an added degree of
complexity. Because of this complexity, only the first steps were achieved. Therefore,

much work still can be done. This research opens the following areas for further studies.

@ A simulation which model the improved MAC protocol.
® A comprehensive performance analysis.

® The faimness of access to transmit on the unused segment and its dependence on the
Timed-Token mechanism.

® Interface implementation feasibility of the Single-MAC-Dual-PHY structure for
simultaneous transmission on the dual ring with the controlled concurrent access

® Proof that the timing requirements for the subtoken can be satisfied under the
timed-token access method.

The formal model for the improved protocol is a superset of FDDI. With the
deletion of some transitions added for the improved protocol and small changes in the
MAC Receiver and Transmitter state diagrams the formal model becomes the original
FDDI or FDDI-II protocol. Conceptually, this model is an excellent tool for development

of test procedures for FDDI stations interoperability achievement. Therefore, Protocol
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Testing of FDDI, FDDI-II and the improved FDDI is also one of the research areas

opened by this thesis.
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